Explore Sequence-to-Sequence (Seq2Seq) models. Learn how encoder-decoder architectures and Transformers power translation, NLP, and multi-modal AI tasks.
Sequence-to-Sequence (Seq2Seq) models are a powerful class of machine learning architectures designed to convert sequences from one domain into sequences in another. Unlike standard image classification tasks where the input and output sizes are fixed, Seq2Seq models excel at handling inputs and outputs of variable lengths. This flexibility makes them the backbone of many modern natural language processing (NLP) applications, such as translation and summarization, where the length of the input sentence does not necessarily dictate the length of the output sentence.
The fundamental structure of a Seq2Seq model relies on the encoder-decoder framework. This architecture splits the model into two primary components that work in tandem to process sequential data.
While early versions relied heavily on RNNs, modern Seq2Seq models predominantly use the Transformer architecture. Transformers utilize the attention mechanism, which allows the model to "pay attention" to specific parts of the input sequence regardless of their distance from the current step, significantly improving performance on long sequences as detailed in the seminal paper Attention Is All You Need.
The versatility of Seq2Seq models allows them to bridge the gap between text analysis and computer vision, enabling complex multi-modal interactions.
While high-level frameworks abstract much of the complexity, understanding the underlying mechanism is helpful. The following code demonstrates a basic LSTM layer in PyTorch, which often serves as the recurrent unit within the encoder or decoder of a traditional Seq2Seq model.
import torch
import torch.nn as nn
# Initialize an LSTM layer (common in Seq2Seq encoders)
# input_size: number of features per time step (e.g., word embedding size)
# hidden_size: size of the context vector/hidden state
lstm_layer = nn.LSTM(input_size=10, hidden_size=20, batch_first=True)
# Create a dummy input sequence: Batch size 3, Sequence length 5, Features 10
input_seq = torch.randn(3, 5, 10)
# Pass the sequence through the LSTM
# output contains features for each time step; hn is the final hidden state
output, (hn, cn) = lstm_layer(input_seq)
print(f"Output shape: {output.shape}") # Shape: [3, 5, 20]
print(f"Final Hidden State shape: {hn.shape}") # Shape: [1, 3, 20]
必须将 Seq2Seq 模型与其他架构区分开来,以了解它们的具体用途。
Seq2Seq models have fundamentally changed how machines interact with human language and temporal data. Their ability to handle sequence-dependent data has enabled the creation of sophisticated chatbots, automated translators, and code generation tools. For developers working with large datasets required to train these models, using the Ultralytics Platform can streamline data management and model deployment workflows. As research progresses into Generative AI, the principles of sequence modeling remain central to the development of Large Language Models (LLMs) and advanced video understanding systems.