Learn how LangChain simplifies developing AI apps with LLMs. Explore RAG, agents, and chains, and see how to [integrate YOLO26](https://docs.ultralytics.com/models/yolo26/) for advanced multimodal workflows.
LangChain is an open-source framework designed to simplify the development of applications powered by large language models (LLMs). While LLMs like GPT-4 are powerful on their own, they often operate in isolation, lacking awareness of real-time data or specific business context. LangChain acts as a bridge, allowing developers to chain together various components—such as prompts, models, and external data sources—to create sophisticated, context-aware applications. By managing the complexity of these interactions, LangChain enables artificial intelligence (AI) systems to reason about problems and take actions based on dynamic inputs.
The framework is built around several modular concepts that work together to enhance Natural Language Processing (NLP) workflows.
LangChain is instrumental in moving generative AI from experimental notebooks to production environments across various industries.
结构化视觉数据与语言推理之间的协同效应是极具发展潜力的领域。开发者可Ultralytics 等高性能模型从图像中提取详细信息——例如物体计数、类别或位置——并将这些结构化数据传递至LangChain工作流进行进一步分析或自然语言描述。
以下 Python 代码片段演示了如何使用Ultralytics 提取检测到的类名,创建可输入下游语言链的文本上下文环境。
from ultralytics import YOLO
# Load the YOLO26 model to generate structured data for a chain
model = YOLO("yolo26n.pt")
# Run inference on an image URL
results = model("https://ultralytics.com/images/bus.jpg")
# Extract detection class names to feed into a LangChain prompt
detections = [model.names[int(c)] for c in results[0].boxes.cls]
# Format the output as a context string for an LLM
chain_input = f"The image contains the following objects: {', '.join(detections)}."
print(chain_input)
区分LangChain与其所协调的技术至关重要:
For developers looking to build robust AI systems, exploring the official LangChain documentation provides deep technical dives, while the Ultralytics documentation offers the necessary tools to integrate state-of-the-art vision capabilities into these intelligent workflows. Additionally, users can leverage the Ultralytics Platform to manage the datasets and training pipelines that feed into these advanced multi-modal systems.