Learn how LangChain simplifies developing AI apps with LLMs. Explore RAG, agents, and chains, and see how to [integrate YOLO26](https://docs.ultralytics.com/models/yolo26/) for advanced multimodal workflows.
LangChain is an open-source framework designed to simplify the development of applications powered by large language models (LLMs). While LLMs like GPT-4 are powerful on their own, they often operate in isolation, lacking awareness of real-time data or specific business context. LangChain acts as a bridge, allowing developers to chain together various components—such as prompts, models, and external data sources—to create sophisticated, context-aware applications. By managing the complexity of these interactions, LangChain enables artificial intelligence (AI) systems to reason about problems and take actions based on dynamic inputs.
The framework is built around several modular concepts that work together to enhance Natural Language Processing (NLP) workflows.
LangChain is instrumental in moving generative AI from experimental notebooks to production environments across various industries.
A sinergia entre dados visuais estruturados e raciocínio linguístico é uma área de desenvolvimento poderosa. Os programadores podem usar modelos de alto desempenho, como Ultralytics , para extrair informações detalhadas de imagens — como contagem de objetos, classes ou localizações — e passar esses dados estruturados para um fluxo de trabalho LangChain para análise adicional ou descrição em linguagem natural.
O seguinte Python demonstra como extrair nomes de classes detetadas usando um Ultralytics , criando um contexto baseado em texto que pode ser alimentado numa cadeia de linguagem a jusante.
from ultralytics import YOLO
# Load the YOLO26 model to generate structured data for a chain
model = YOLO("yolo26n.pt")
# Run inference on an image URL
results = model("https://ultralytics.com/images/bus.jpg")
# Extract detection class names to feed into a LangChain prompt
detections = [model.names[int(c)] for c in results[0].boxes.cls]
# Format the output as a context string for an LLM
chain_input = f"The image contains the following objects: {', '.join(detections)}."
print(chain_input)
É importante diferenciar o LangChain das tecnologias que ele coordena:
For developers looking to build robust AI systems, exploring the official LangChain documentation provides deep technical dives, while the Ultralytics documentation offers the necessary tools to integrate state-of-the-art vision capabilities into these intelligent workflows. Additionally, users can leverage the Ultralytics Platform to manage the datasets and training pipelines that feed into these advanced multi-modal systems.