Yolo فيجن شنتشن
شنتشن
انضم الآن
مسرد المصطلحات

الاسترجاع

تعرف على ماهية الاسترجاع في التعلم الآلي، ولماذا هو مهم، وكيف يضمن أن نماذج الذكاء الاصطناعي تلتقط الحالات الإيجابية الهامة بشكل فعال.

Recall, also known as sensitivity or the true positive rate, is a fundamental performance metric in machine learning that measures the ability of a model to identify all relevant instances within a dataset. In the context of object detection or classification, it specifically answers the question: "Out of all the actual positive cases, how many did the model correctly find?" Achieving high recall is critical in scenarios where missing a positive instance—often referred to as a false negative—carries significant consequences. Unlike accuracy, which can be misleading when dealing with imbalanced data, recall provides a focused view on the model's effectiveness at "capturing" the target class.

أهمية الاسترجاع العالي

In many artificial intelligence applications, the cost of failing to detect an object is far higher than the cost of a false alarm. A model optimized for recall minimizes false negatives, ensuring that the system casts a wide enough net to catch potential threats, anomalies, or critical conditions. This often involves a trade-off, as increasing recall can sometimes lead to a lower precision score, meaning the model might flag more non-relevant items as positive. Understanding this balance is key to developing robust machine learning solutions.

تطبيقات واقعية

التذكر هو المقياس الدافع وراء العديد من حلول الذكاء الاصطناعي الحيوية للسلامة . فيما يلي مثالان بارزان حيث الحساسية لها الأسبقية:

  • التشخيص الطبي: في تحليل الصور الطبية، مثل فحص الأشعة السينية للكشف عن العلامات المبكرة للمرض، لا يمكن التنازل عن دقة الاسترجاع العالية. إذا تم استخدام الذكاء الاصطناعي في نظام الرعاية الصحية detect عن الأورام، فمن الأفضل بكثير أن يقوم النظام بتمييز ظل مشبوه يتبين أنه حميد (إيجابي كاذب) بدلاً من تفويت ورم خبيث تمامًا. يعتمد الأطباء على هذه الأدوات كشبكة أمان، لضمان عدم إغفال أي مخاطر صحية محتملة .
  • الأمن والمراقبة: بالنسبة لنظام الإنذار الأمني، فإن الهدف الأساسي هو detect محاولة اقتحام. يضمن النظام المُحسّن للحصول على أعلى مستوى من الاسترجاع أن ينطلق الإنذار إذا دخل شخص ما إلى منطقة محظورة . على الرغم من أن هذا قد يؤدي إلى إنذارات كاذبة من حين لآخر بسبب الحيوانات البرية، إلا أن هذا أفضل من فشل النظام في detect حقيقي. يتم ضبط نماذج الكشف عن الأجسام في هذه السيناريوهات لضمان أقصى حساسية تجاه التهديدات المحتملة.

Recall vs. Precision

It is essential to distinguish recall from its counterpart, precision. While recall measures the quantity of relevant cases found (completeness), precision measures the quality of the positive predictions (exactness).

  • Recall: Focuses on avoiding missed detections. "Did we find all the apples?"
  • Precision: Focuses on minimizing false alarms. "Are all the things we called apples actually apples?"

These two metrics often share an inverse relationship, visualized through a Precision-Recall curve. To evaluate the overall balance between them, developers often look at the F1-score, which is the harmonic mean of both. In imbalanced datasets, looking at recall alongside the confusion matrix gives a much clearer picture of performance than accuracy alone.

قياس الاستدعاء باستخدامYOLO Ultralytics YOLO

When training models like the cutting-edge YOLO26, recall is automatically computed during the validation phase. The framework calculates recall for each class and the mean Average Precision (mAP), helping developers gauge how well the model finds objects.

يمكنك بسهولة التحقق من صحة نموذج مدرب وعرض مقاييس استرجاعه باستخدام Python. يوضح هذا المقتطف كيفية تحميل نموذج والتحقق من أدائه على مجموعة بيانات قياسية:

from ultralytics import YOLO

# Load a pretrained YOLO26 model
model = YOLO("yolo26n.pt")

# Validate the model on the COCO8 dataset
# The results object contains metrics like Precision, Recall, and mAP
metrics = model.val(data="coco8.yaml")

# Access and print the mean recall score for box detection
print(f"Mean Recall: {metrics.results_dict['metrics/recall(B)']:.4f}")

This code utilizes the Ultralytics API to run validation. If the recall is lower than required for your project, you might consider techniques like data augmentation to create more varied training examples or hyperparameter tuning to adjust the model's sensitivity. Using the Ultralytics Platform can also streamline the process of managing datasets and tracking these metrics over multiple training runs.

Improving Model Recall

To boost a model's recall, data scientists often adjust the confidence threshold used during inference. Lowering the threshold makes the model more "optimistic," accepting more predictions as positive, which increases recall but may decrease precision. Additionally, collecting more diverse training data helps the model learn to recognize hard negatives and obscure instances. For complex tasks, employing advanced architectures like Transformer blocks or exploring ensemble methods can also improve the system's ability to detect subtle features that simpler models might miss.

انضم إلى مجتمع Ultralytics

انضم إلى مستقبل الذكاء الاصطناعي. تواصل وتعاون وانمو مع المبتكرين العالميين

انضم الآن