NVIDIA GPU에서 더 빠르고 효율적인 추론을 위해 TensorRT 딥 러닝 모델을 최적화하세요. YOLO 및 AI 애플리케이션으로 실시간 성능을 달성하세요.
TensorRT is a high-performance deep learning inference software development kit (SDK) developed by NVIDIA. It is designed to optimize neural network models for deployment, delivering low inference latency and high throughput for deep learning applications. By acting as an optimization compiler, TensorRT takes trained networks from popular frameworks like PyTorch and TensorFlow and restructures them to execute efficiently on NVIDIA GPUs. This capability is crucial for running complex AI models in production environments where speed and efficiency are paramount.
The core function of TensorRT is to convert a trained neural network into an optimized "engine" specifically tuned for the target hardware. It achieves this through several advanced techniques:
TensorRT 최소한의 지연으로 방대한 양의 데이터를 처리할 수 있는 능력 덕분에 컴퓨터 비전과 복잡한 AI 작업에 의존하는 산업 분야에서 시간이 매우 중요한 상황에서 널리 채택되고 TensorRT .
최신 AI 도구를 사용하면 워크플로에 TensorRT 간편하게 통합할 수 있습니다. 그리고 ultralytics package
provides a seamless method to convert standard PyTorch models into TensorRT engines. This allows users to leverage the
state-of-the-art architecture of Ultralytics YOLO26 with the
hardware acceleration of NVIDIA GPUs. For teams looking to manage their datasets and training pipelines before export,
the Ultralytics 플랫폼 offers a comprehensive environment to prepare
models for such high-performance deployment.
다음 예제는 YOLO26 모델을 TensorRT 파일로 내보내는 방법을 보여줍니다..engine) 그리고
사용하기 위해 실시간 추론:
from ultralytics import YOLO
# Load the latest stable YOLO26 model (nano size)
model = YOLO("yolo26n.pt")
# Export the model to TensorRT format (creates 'yolo26n.engine')
# This step optimizes the computational graph for your specific GPU
model.export(format="engine")
# Load the optimized TensorRT engine for high-speed inference
trt_model = YOLO("yolo26n.engine")
# Run inference on an image source
results = trt_model("https://ultralytics.com/images/bus.jpg")
It is important to distinguish TensorRT from other terms often heard in the model deployment landscape:
For developers aiming to maximize the performance of their AI agents or vision systems, understanding the transition from a training framework to an optimized runtime like TensorRT is a key step in professional MLOps.