Yolo 비전 선전
선전
지금 참여하기
용어집

시계열 분석

Explore time series analysis to master forecasting and trend detection. Learn how to leverage [Ultralytics YOLO26](https://docs.ultralytics.com/models/yolo26/) to convert visual data into actionable temporal insights.

Time series analysis is a specific method of analyzing a sequence of data points collected over an interval of time. In this process, analysts record data points at consistent intervals over a set period rather than just recording the data points intermittently or randomly. Unlike static datasets used for standard Image Classification, time series data adds a temporal dimension, meaning the order of the data is crucial for understanding the underlying patterns. This technique is fundamental to Data Analytics and is widely used to forecast future events based on historical trends.

Core Components and Techniques

To effectively analyze time-based data, practitioners must identify the distinct components that make up the signal.

  • Trend Analysis: This involves identifying the long-term direction of the data. For example, Linear Regression is often used to model whether sales are generally increasing or decreasing over several years.
  • Seasonality Detection: Many datasets exhibit regular, predictable changes that recur every calendar year. Retailers use seasonality analysis to prepare for holiday spikes or weather-related buying habits.
  • Stationarity: A time series is said to be stationary if its statistical properties, such as mean and variance, do not change over time. Techniques like the Dickey-Fuller test help determine if data needs transformation before modeling.
  • Noise Estimation: Random variations or "white noise" can obscure true patterns. Advanced filtering or Autoencoders are used to separate meaningful signals from random fluctuations.

실제 AI/ML 애플리케이션

시계열 분석은 운영을 최적화하고 위험을 줄이기 위해 정확한 예측이 필요한 산업에서 매우 중요합니다. 위험 감소.

  • 소매업에서의 수요 예측: 소매업체들은 인공지능(AI)을 활용해 재고 요구량을 예측합니다. 과거 판매 시계열 데이터를 분석함으로써 기업들은 공급망을 최적화하여 과잉 재고와 품절을 동시에 줄일 수 있습니다. 소매 데이터에서 나타나는 강한 계절적 효과를 처리하기 위해 Facebook Prophet과 같은 도구가 자주 활용됩니다.
  • Healthcare Vitals Monitoring: In the medical field, AI in Healthcare systems continuously monitor patient vitals such as heart rate and blood pressure. Time series algorithms can perform Anomaly Detection to alert medical staff immediately if a patient's metrics deviate from their normal historical baseline, potentially saving lives.
  • 예측 유지보수: 제조 공장은 센서를 활용해 기계의 진동 또는 온도 데이터를 지속적으로 수집합니다. 제조업에 인공지능을 적용함으로써 기업은 장비 고장이 발생하기 전에 이를 예측하여 가동 중단 시간을 최소화할 수 있습니다.

컴퓨터 비전에서 시계열 생성

While time series analysis is distinct from Computer Vision (CV)—which focuses on spatial data like images—the two fields often intersect. A CV model can process video streams to generate time series data. For example, an Object Counting system running on a traffic camera produces a sequential count of cars per minute.

다음 예제는 Ultralytics 사용하여 비디오 내 track 시각적 데이터를 객체 개수 시계열로 효과적으로 변환하는 방법을 보여줍니다.

from ultralytics import YOLO

# Load the YOLO26 model for object tracking
model = YOLO("yolo26n.pt")

# Track objects in a video stream (generates time-series data)
# The 'stream=True' argument returns a generator for memory efficiency
results = model.track("https://docs.ultralytics.com/modes/track/", stream=True)

# Process frames sequentially to build a time series of counts
for i, r in enumerate(results):
    if r.boxes.id is not None:
        count = len(r.boxes.id)
        print(f"Time Step {i}: {count} objects detected")

For managing datasets and training models that feed into these pipelines, users can leverage the Ultralytics Platform, which simplifies the workflow from annotation to deployment.

Modern Neural Architectures

Traditional statistical methods like ARIMA (AutoRegressive Integrated Moving Average) are still popular, but modern Deep Learning (DL) has introduced powerful alternatives.

  • Recurrent Neural Networks (RNNs): Specifically designed for sequential data, a Recurrent Neural Network (RNN) maintains a "memory" of previous inputs, making it suitable for short-term dependencies.
  • Long Short-Term Memory (LSTM): To address the limitations of standard RNNs in remembering long sequences, the Long Short-Term Memory (LSTM) architecture uses gates to control information flow, effectively modeling long-term temporal dependencies.
  • Transformers: Originally built for text, the Transformer architecture and its attention mechanisms are now state-of-the-art for forecasting complex time series data, often outperforming older recurrent models.

관련 용어와의 차이점

시계열 분석과 시퀀스 모델링을 구분하는 것이 중요합니다. 컴퓨터 비전과 구별하는 것이 중요합니다.

  • 시계열 대 시퀀스 모델링: 모든 시계열은 시퀀스이지만, 모든 시퀀스가 시계열은 아니다. 자연어 처리(NLP)는 순서가 중요한 단어 시퀀스를 다루지만, '시간' 요소는 추상적이다. 시계열 분석은 특히 데이터가 시간으로 인덱싱됨을 의미한다.
  • 시계열 대 컴퓨터 비전: CV는 시각적 입력(픽셀)을 해석하는 분야입니다. 그러나 비디오 이해와 같은 기술은 시각 분석에 시간적 차원을 추가함으로써 이 간극을 메우며, 종종 트랜스포머를 활용해 시각적 콘텐츠가 시간에 따라 어떻게 변화하는지 이해합니다.

Ultralytics 커뮤니티 가입

AI의 미래에 동참하세요. 글로벌 혁신가들과 연결하고, 협력하고, 성장하세요.

지금 참여하기