Yolo Vision Shenzhen
Shenzhen
Junte-se agora
Glossário

Redes de Cápsulas (CapsNet)

Explore Capsule Networks (CapsNets) and how they preserve spatial hierarchies to solve the "Picasso problem" in AI. Learn about dynamic routing and vector neurons.

Capsule Networks, often abbreviated as CapsNets, represent an advanced architecture in the field of deep learning designed to overcome specific limitations found in traditional neural networks. Introduced by Geoffrey Hinton and his team, CapsNets attempt to mimic the biological neural organization of the human brain more closely than standard models. Unlike a typical convolutional neural network (CNN), which excels at detecting features but often loses spatial relationships due to downsampling, a Capsule Network organizes neurons into groups called "capsules." These capsules encode not just the probability of an object's presence, but also its specific properties, such as orientation, size, and texture, effectively preserving the hierarchical spatial relationships within visual data.

The Limitation of Traditional CNNs

To understand the innovation of CapsNets, it is helpful to look at how standard computer vision models operate. A conventional CNN uses layers of feature extraction followed by pooling layers—specifically max pooling—to reduce computational load and achieve translational invariance. This means a CNN can identify a "cat" regardless of where it sits in the image.

However, this process often discards precise location data, leading to the "Picasso problem": a CNN might classify a face correctly even if the mouth is on the forehead, simply because all the necessary features are present. CapsNets address this by removing pooling layers and replacing them with a process that respects the spatial hierarchies of objects.

How Capsule Networks Work

The core building block of this architecture is the capsule, a nested set of neurons that outputs a vector rather than a scalar value. In vector mathematics, a vector has both magnitude and direction. In a CapsNet:

  • Magnitude (Length): Represents the probability that a specific entity exists in the current input.
  • Direction (Orientation): Encodes the instantiation parameters, such as the object's pose estimation, scale, and rotation.

Capsules in lower layers (detecting simple shapes like edges) predict the output of capsules in higher layers (detecting complex objects like eyes or tires). This communication is managed by an algorithm called "dynamic routing" or "routing by agreement." If a lower-level capsule's prediction aligns with the higher-level capsule's state, the connection between them is strengthened. This allows the network to recognize objects from different 3D viewpoints without requiring the massive data augmentation usually needed to teach CNNs about rotation and scale.

Principais diferenças: CapsNets vs. CNNs

Embora ambas as arquiteturas sejam fundamentais para a visão computacional (CV), elas diferem na forma como processam e representam os dados visuais:

  • Scalar vs. Vector: CNN neurons use scalar outputs to signify feature presence. CapsNets use vectors to encode presence (length) and pose parameters (orientation).
  • Routing vs. Pooling: CNNs use pooling to downsample data, often losing location details. CapsNets use dynamic routing to preserve spatial data, making them highly effective for tasks requiring precise object tracking.
  • Data Efficiency: Because capsules implicitly understand 3D viewpoints and affine transformations, they can often generalize from less training data compared to CNNs, which may require extensive examples to learn every possible rotation of an object.

Aplicações no Mundo Real

Embora as CapsNets sejam frequentemente mais dispendiosas em termos computacionais do que modelos otimizados como o YOLO26, elas oferecem vantagens distintas em domínios especializados :

  1. Análise de imagens médicas: Na área da saúde, a orientação e a forma precisas de uma anomalia são fundamentais. Os investigadores aplicaram CapsNets à segmentação de tumores cerebrais, onde o modelo deve distinguir um tumor do tecido circundante com base em hierarquias espaciais subtis que as CNNs padrão podem suavizar . Pode explorar pesquisas relacionadas sobre Redes de Cápsulas em Imagens Médicas.
  2. Overlapping Digit Recognition: CapsNets achieved state-of-the-art results on the MNIST dataset specifically in scenarios where digits overlap. Because the network tracks the "pose" of each digit, it can disentangle two overlapping numbers (e.g., a '3' on top of a '5') as distinct objects rather than merging them into a single confused feature map.

Contexto prático e implementação

As Capsule Networks são principalmente uma arquitetura de classificação. Embora ofereçam robustez teórica, as aplicações industriais modernas geralmente favorecem CNNs ou Transformers de alta velocidade para desempenho em tempo real. No entanto, é útil compreender os benchmarks de classificação usados para CapsNets, como MNIST.

O exemplo a seguir demonstra como treinar um modelo moderno. Modelo YOLO no conjunto MNIST usando o ultralytics pacote. Isso é semelhante à tarefa de referência principal usada para validar as redes de cápsulas.

from ultralytics import YOLO

# Load a YOLO26 classification model (optimized for speed and accuracy)
model = YOLO("yolo26n-cls.pt")

# Train the model on the MNIST dataset
# This dataset helps evaluate how well a model learns handwritten digit features
results = model.train(data="mnist", epochs=5, imgsz=32)

# Run inference on a sample image
# The model predicts the digit class (0-9)
predict = model("https://docs.ultralytics.com/datasets/classify/mnist/")

O futuro das cápsulas e da IA visual

Os princípios por trás das redes de cápsulas continuam a influenciar a pesquisa sobre segurança e interpretabilidade da IA. Ao modelar explicitamente as relações entre partes e o todo, as cápsulas oferecem uma alternativa de "caixa de vidro" à natureza de "caixa preta" das redes neurais profundas, tornando as decisões mais explicáveis. Os desenvolvimentos futuros buscam combinar a robustez espacial das cápsulas com a velocidade de inferência de arquiteturas como YOLO11 ou a mais recente YOLO26 para melhorar o desempenho na detecção de objetos 3D e robótica. Os investigadores também estão a explorar as Matrix Capsules com EM Routing para reduzir ainda mais o custo computacional do algoritmo de concordância.

For developers looking to manage datasets and train models efficiently, the Ultralytics Platform provides a unified environment to annotate data, train in the cloud, and deploy models that balance the speed of CNNs with the accuracy required for complex vision tasks.

Junte-se à comunidade Ultralytics

Junte-se ao futuro da IA. Conecte-se, colabore e cresça com inovadores globais

Junte-se agora