Explore how Question Answering (QA) uses AI to provide factual answers. Learn about VQA with [YOLO26](https://docs.ultralytics.com/models/yolo26/) and NLP techniques.
Question Answering (QA) is a specialized field within artificial intelligence (AI) and natural language processing (NLP) focused on building systems that automatically answer questions posed by humans in natural language. Unlike traditional search engines that retrieve a list of relevant documents or web pages, a QA system attempts to understand the intent of the user's query and provide a precise, factual answer. This capability bridges the gap between massive, unstructured data repositories and the specific information needs of users, making it a critical component of modern AI Agents and virtual assistants.
At its core, a Question Answering system involves three main stages: question processing, document retrieval, and answer extraction. First, the system analyzes the input query to determine what is being asked (e.g., a "who," "where," or "how" question) and identifies key entities. Next, it searches through a knowledge base—which could be a closed set of manuals or the open internet—to find passages relevant to the query. Finally, it uses advanced techniques like machine reading comprehension to pinpoint the exact answer within the text or generate a response based on the synthesized information.
Modern QA systems often leverage Large Language Models (LLMs) and transformers like BERT (Bidirectional Encoder Representations from Transformers) to achieve high accuracy. These models are pre-trained on vast amounts of text, allowing them to grasp context, nuance, and semantic relationships better than keyword-based methods.
Системы контроля качества обычно классифицируются по области данных, к которым они имеют доступ, и поддерживаемым ими методам.
Внедрение технологий обеспечения качества преобразует способы взаимодействия отраслей с огромными объемами неструктурированных данных.
Для визуального ответа на вопросы (VQA) система должна сначала идентифицировать объекты и их взаимосвязи внутри сцены. Высокопроизводительная модель обнаружения объектов действует как «глаза» системы QA. Новейшая модель Ultralytics идеально подходит для этой задачи, предлагая быстрое и точное обнаружение элементов сцены, которые затем могут быть введены в языковую модель для рассуждений.
The following Python example demonstrates how to use the Ultralytics YOLO26 model to extract visual context (objects) from an image, which is the foundational step in a VQA pipeline:
from ultralytics import YOLO
# Load a pre-trained YOLO26 model (latest generation)
model = YOLO("yolo26n.pt")
# Perform inference to identify objects in the image
# This provides the "visual facts" for a QA system
results = model("https://ultralytics.com/images/bus.jpg")
# Display the detected objects and their labels
results[0].show()
Полезно отличать «ответы на вопросы» от схожих терминов в области машинного обучения:
The evolution of QA is heavily supported by open-source frameworks like PyTorch and TensorFlow, enabling developers to build increasingly sophisticated systems that understand the world through both text and pixels. For those looking to manage datasets for training these systems, the Ultralytics Platform offers comprehensive tools for annotation and model management.