Yolo فيجن شنتشن
شنتشن
انضم الآن
مسرد المصطلحات

تكميم النموذج (Model Quantization)

حسّن أداء الذكاء الاصطناعي باستخدام تكميم النموذج. قلل الحجم، وعزز السرعة، وحسّن كفاءة الطاقة لعمليات النشر في العالم الحقيقي.

Model quantization is a sophisticated model optimization technique used to reduce the computational and memory costs of running deep learning models. In standard training workflows, neural networks typically store parameters (weights and biases) and activation maps using 32-bit floating-point numbers (FP32). While this high precision ensures accurate calculations during training, it is often unnecessary for inference. Quantization converts these values into lower-precision formats, such as 16-bit floating-point (FP16) or 8-bit integers (INT8), effectively shrinking the model size and accelerating execution speed without significantly compromising accuracy.

Why Quantization Matters

The primary driver for quantization is the need to deploy powerful AI on resource-constrained hardware. As computer vision models like YOLO26 become more complex, their computational demands increase. Quantization addresses three critical bottlenecks:

  • Memory Footprint: By reducing the bit-width of weights (e.g., from 32-bit to 8-bit), the model's storage requirement is reduced by up to 4x. This is vital for mobile apps where application size is restricted.
  • Inference Latency: Lower precision operations are computationally cheaper. Modern processors, especially those with specialized neural processing units (NPUs), can execute INT8 operations much faster than FP32, significantly reducing inference latency.
  • Power Consumption: Moving less data through memory and performing simpler arithmetic operations consumes less energy, extending battery life in portable devices and autonomous vehicles.

مقارنة مع المفاهيم ذات الصلة

من المهم التمييز بين التكمية وتقنيات التحسين الأخرى، لأنها تعدل النموذج بطرق مختلفة :

  • Quantization vs. Pruning: While quantization reduces the file size by lowering the bit-width of parameters, model pruning involves removing unnecessary connections (weights) entirely to create a sparse network. Pruning alters the model's structure, whereas quantization alters the data representation.
  • التكمية مقابل تقطير المعرفة: تقطير المعرفة هو تقنية تدريب حيث يتعلم نموذج "طالب" صغير محاكاة نموذج "معلم" كبير. غالبًا ما يتم تطبيق التكمية على نموذج الطالب بعد التقطير لتعزيز أداء الذكاء الاصطناعي المتطور.

تطبيقات واقعية

Quantization enables computer vision and AI across various industries where efficiency is paramount.

  1. Autonomous Systems: In the automotive industry, self-driving cars must process visual data from cameras and LiDAR in real-time. Quantized models deployed on NVIDIA TensorRT engines allow these vehicles to detect pedestrians and obstacles with millisecond latency, ensuring passenger safety.
  2. الزراعة الذكية: تستخدم الطائرات بدون طيار المزودة بكاميرات متعددة الأطياف نماذج كمية للكشف عن الأجسام لتحديد أمراض المحاصيل أو مراقبة مراحل النمو. ويؤدي تشغيل هذه النماذج محليًا على الأنظمة المدمجة في الطائرات بدون طيارإلى التخلص من الحاجة إلى الاتصالات الخلوية غير الموثوقة في الحقول النائية.

تنفيذ التحويل الكمي باستخدام Ultralytics

The Ultralytics library simplifies the export process, allowing developers to convert models like the cutting-edge YOLO26 into quantized formats. The Ultralytics Platform also provides tools to manage these deployments seamlessly.

The following example demonstrates how to export a model to TFLite with INT8 quantization enabled. This process involves a calibration step where the model observes sample data to determine the optimal dynamic range for the quantized values.

from ultralytics import YOLO

# Load a standard YOLO26 model
model = YOLO("yolo26n.pt")

# Export to TFLite format with INT8 quantization
# The 'int8' argument triggers Post-Training Quantization
# 'data' provides the calibration dataset needed for mapping values
model.export(format="tflite", int8=True, data="coco8.yaml")

غالبًا ما يتم نشر النماذج المحسّنة باستخدام معايير قابلة للتشغيل البيني مثل ONNX أو محركات الاستدلال عالية الأداء مثل OpenVINO، مما يضمن توافقًا واسعًا عبر أنظمة الأجهزة المتنوعة.

انضم إلى مجتمع Ultralytics

انضم إلى مستقبل الذكاء الاصطناعي. تواصل وتعاون وانمو مع المبتكرين العالميين

انضم الآن