Yolo 비전 선전
선전
지금 참여하기
용어집

재현율(Recall)

머신러닝에서 재현율(Recall)이 무엇인지, 왜 중요한지, AI 모델이 중요한 긍정적 인스턴스를 효과적으로 캡처하는 방법을 알아보세요.

Recall, also known as sensitivity or the true positive rate, is a fundamental performance metric in machine learning that measures the ability of a model to identify all relevant instances within a dataset. In the context of object detection or classification, it specifically answers the question: "Out of all the actual positive cases, how many did the model correctly find?" Achieving high recall is critical in scenarios where missing a positive instance—often referred to as a false negative—carries significant consequences. Unlike accuracy, which can be misleading when dealing with imbalanced data, recall provides a focused view on the model's effectiveness at "capturing" the target class.

높은 재현율의 중요성

In many artificial intelligence applications, the cost of failing to detect an object is far higher than the cost of a false alarm. A model optimized for recall minimizes false negatives, ensuring that the system casts a wide enough net to catch potential threats, anomalies, or critical conditions. This often involves a trade-off, as increasing recall can sometimes lead to a lower precision score, meaning the model might flag more non-relevant items as positive. Understanding this balance is key to developing robust machine learning solutions.

실제 애플리케이션

리콜은 많은 안전이 중요한 AI 솔루션의 핵심 지표입니다. 다음은 민감도가 우선시되는 두 가지 대표적인 사례입니다:

  • 의료 진단: 의료 영상 분석, 예를 들어 질병의 초기 징후를 검진하기 위한 X선 촬영에서는 높은 재현율이 필수적입니다. 의료 시스템에서 AI를 종양 detect 활용할 경우, 악성 종양을 완전히 놓치는 것보다 결국 양성으로 판명되는 의심스러운 그림자를 경고하는 것이 훨씬 낫습니다(위양성). 의사들은 이러한 도구를 안전망으로 활용하여 잠재적 건강 위험이 간과되지 않도록 합니다.
  • 보안 및 감시: 보안 경보 시스템의 주요 목표는 detect 침입 시도를 detect 것입니다. 높은 재현율(recall)로 최적화된 시스템은 제한 구역에 사람이 진입할 경우 경보가 작동하도록 보장합니다. 이는 야생동물로 인한 가끔의 오경보를 유발할 수 있으나, 실제 detect 못하는 것보다 차라리 선호되는 방식입니다. 이러한 시나리오에서 물체 탐지 모델은 잠재적 위협에 대한 최대 감도를 보장하도록 조정됩니다.

Recall vs. Precision

It is essential to distinguish recall from its counterpart, precision. While recall measures the quantity of relevant cases found (completeness), precision measures the quality of the positive predictions (exactness).

  • Recall: Focuses on avoiding missed detections. "Did we find all the apples?"
  • Precision: Focuses on minimizing false alarms. "Are all the things we called apples actually apples?"

These two metrics often share an inverse relationship, visualized through a Precision-Recall curve. To evaluate the overall balance between them, developers often look at the F1-score, which is the harmonic mean of both. In imbalanced datasets, looking at recall alongside the confusion matrix gives a much clearer picture of performance than accuracy alone.

Ultralytics YOLO 통한 리콜 측정

When training models like the cutting-edge YOLO26, recall is automatically computed during the validation phase. The framework calculates recall for each class and the mean Average Precision (mAP), helping developers gauge how well the model finds objects.

훈련된 모델을 쉽게 검증하고 리콜 지표를 확인할 수 있습니다. 다음 Python 조각은 모델을 로드하고 표준 데이터셋에서 성능을 확인하는 방법을 보여줍니다:

from ultralytics import YOLO

# Load a pretrained YOLO26 model
model = YOLO("yolo26n.pt")

# Validate the model on the COCO8 dataset
# The results object contains metrics like Precision, Recall, and mAP
metrics = model.val(data="coco8.yaml")

# Access and print the mean recall score for box detection
print(f"Mean Recall: {metrics.results_dict['metrics/recall(B)']:.4f}")

This code utilizes the Ultralytics API to run validation. If the recall is lower than required for your project, you might consider techniques like data augmentation to create more varied training examples or hyperparameter tuning to adjust the model's sensitivity. Using the Ultralytics Platform can also streamline the process of managing datasets and tracking these metrics over multiple training runs.

Improving Model Recall

To boost a model's recall, data scientists often adjust the confidence threshold used during inference. Lowering the threshold makes the model more "optimistic," accepting more predictions as positive, which increases recall but may decrease precision. Additionally, collecting more diverse training data helps the model learn to recognize hard negatives and obscure instances. For complex tasks, employing advanced architectures like Transformer blocks or exploring ensemble methods can also improve the system's ability to detect subtle features that simpler models might miss.

Ultralytics 커뮤니티 가입

AI의 미래에 동참하세요. 글로벌 혁신가들과 연결하고, 협력하고, 성장하세요.

지금 참여하기