Explore how scalability empowers AI systems to handle growth. Learn to optimize MLOps with [Ultralytics YOLO26](https://docs.ultralytics.com/models/yolo26/) and the [Ultralytics Platform](https://platform.ultralytics.com) for high-performance, distributed training and seamless deployment.
Scalability refers to the capability of a system, network, or process to handle a growing amount of work by adding resources. In the context of Artificial Intelligence (AI) and Machine Learning (ML), scalability describes a model's or infrastructure's ability to maintain performance levels as demand increases. This demand typically manifests as larger datasets during training, higher user traffic during inference, or increased complexity in computational tasks. A scalable architecture allows for seamless expansion—whether deploying a computer vision model to a single embedded device or serving millions of API requests via cloud clusters—ensuring that inference latency remains low even under heavy load.
Designing for scalability is a critical component of successful Machine Learning Operations (MLOps). A model that functions perfectly in a controlled research environment may fail when exposed to the high-velocity data streams found in production. Effectively managing Big Data requires systems that can scale horizontally (adding more machines to a cluster) or vertically (adding more power, such as RAM or GPUs, to existing machines).
확장 가능한 AI 시스템의 주요 장점은 다음과 같습니다:
확장 가능한 AI 솔루션을 만들려면 모델 아키텍처와 배포 인프라를 모두 최적화해야 합니다.
추론 중 확장성을 개선하는 효과적인 방법 중 하나는 입력을 순차적으로 처리하는 대신 배치 단위로 처리하는 것이다. 이는 GPU 극대화하고 전체 처리량을 증가시킨다.
from ultralytics import YOLO
# Load a scalable YOLO26 model (smaller 'n' version for speed)
model = YOLO("yolo26n.pt")
# Define a batch of images (URLs or local paths)
# Processing multiple images at once leverages parallel computation
batch_images = ["https://ultralytics.com/images/bus.jpg", "https://ultralytics.com/images/zidane.jpg"]
# Run inference on the batch
results = model(batch_images)
# Print the number of detections for the first image
print(f"Detected {len(results[0].boxes)} objects in the first image.")
확장성은 AI 기술이 이론적 연구에서 글로벌 산업 도구로 전환할 수 있게 합니다.
비록 종종 혼용되지만, 확장성은 성능 및 효율성과는 별개의 개념이다.