Yolo Vision Shenzhen
Shenzhen
Junte-se agora
Glossário

TensorRT

Otimize modelos de deep learning com o TensorRT para uma inferência mais rápida e eficiente em GPUs NVIDIA . Obtenha desempenho em tempo real com YOLO e aplicações de AI.

TensorRT is a high-performance deep learning inference software development kit (SDK) developed by NVIDIA. It is designed to optimize neural network models for deployment, delivering low inference latency and high throughput for deep learning applications. By acting as an optimization compiler, TensorRT takes trained networks from popular frameworks like PyTorch and TensorFlow and restructures them to execute efficiently on NVIDIA GPUs. This capability is crucial for running complex AI models in production environments where speed and efficiency are paramount.

How TensorRT Optimizes Models

The core function of TensorRT is to convert a trained neural network into an optimized "engine" specifically tuned for the target hardware. It achieves this through several advanced techniques:

  • Layer Fusion: The optimizer combines multiple layers of a neural network into a single kernel, reducing memory access overhead and improving execution speed.
  • Precision Calibration: TensorRT supports reduced precision modes, such as mixed precision (FP16) and integer quantization (INT8). By reducing the number of bits used to represent numbers—often with minimal accuracy loss—developers can significantly accelerate math operations and reduce memory usage. This is a form of model quantization.
  • Kernel Auto-Tuning: The software automatically selects the best data layers and algorithms for the specific GPU architecture being used, ensuring maximum utilization of the hardware's parallel processing capabilities via CUDA.

Aplicações no Mundo Real

Devido à sua capacidade de processar grandes quantidades de dados com o mínimo de atraso, TensorRT amplamente adotado em setores que dependem de visão computacional e tarefas complexas de IA , onde o tempo é fundamental.

  1. Sistemas autônomos: No campo da IA automotiva, os carros autônomos precisam processar imagens de vídeo de várias câmaras para detect , sinais e obstáculos instantaneamente. Usando TensorRT, modelos de percepção, como redes de detecção de objetos, podem analisar quadros em milissegundos, permitindo que o sistema de controle do veículo tome decisões críticas de segurança sem atrasos.
  2. Automação industrial: as fábricas modernas utilizam IA na produção para inspeção ótica automatizada . Câmaras de alta velocidade capturam imagens de produtos em linhas de montagem, e modelos TensorRT identificam defeitos ou anomalias em tempo real. Isso garante que o controlo de qualidade acompanhe os ambientes de produção de alta velocidade , muitas vezes implantados em dispositivos de IA de ponta, como a plataforma NVIDIA , diretamente no chão de fábrica.

Usando TensorRT Ultralytics YOLO

A integração do TensorRT no seu fluxo de trabalho é simples com as modernas ferramentas de IA. O ultralytics package provides a seamless method to convert standard PyTorch models into TensorRT engines. This allows users to leverage the state-of-the-art architecture of Ultralytics YOLO26 with the hardware acceleration of NVIDIA GPUs. For teams looking to manage their datasets and training pipelines before export, the Plataforma Ultralytics offers a comprehensive environment to prepare models for such high-performance deployment.

O exemplo a seguir demonstra como exportar um modelo YOLO26 para um ficheiro TensorRT (.engine) e utilizá-lo para inferência em tempo real:

from ultralytics import YOLO

# Load the latest stable YOLO26 model (nano size)
model = YOLO("yolo26n.pt")

# Export the model to TensorRT format (creates 'yolo26n.engine')
# This step optimizes the computational graph for your specific GPU
model.export(format="engine")

# Load the optimized TensorRT engine for high-speed inference
trt_model = YOLO("yolo26n.engine")

# Run inference on an image source
results = trt_model("https://ultralytics.com/images/bus.jpg")

TensorRT vs. ONNX vs. Training Frameworks

It is important to distinguish TensorRT from other terms often heard in the model deployment landscape:

  • Vs. PyTorch/TensorFlow: Frameworks like PyTorch are primarily designed for model training and research, offering flexibility and ease of debugging. TensorRT is an inference engine designed solely for executing trained models as fast as possible. It is not used for training.
  • Vs. ONNX: The ONNX (Open Neural Network Exchange) format acts as an intermediary bridge between frameworks. While ONNX provides interoperability (e.g., moving a model from PyTorch to another platform), TensorRT focuses on hardware-specific optimization. Often, a model is converted to ONNX first, and then parsed by TensorRT to generate the final engine.

For developers aiming to maximize the performance of their AI agents or vision systems, understanding the transition from a training framework to an optimized runtime like TensorRT is a key step in professional MLOps.

Junte-se à comunidade Ultralytics

Junte-se ao futuro da IA. Conecte-se, colabore e cresça com inovadores globais

Junte-se agora