NVIDIA GPU'larda daha hızlı ve verimli çıkarım için derin öğrenme modellerini TensorRT ile optimize edin. YOLO ve yapay zeka uygulamalarıyla gerçek zamanlı performans elde edin.
TensorRT is a high-performance deep learning inference software development kit (SDK) developed by NVIDIA. It is designed to optimize neural network models for deployment, delivering low inference latency and high throughput for deep learning applications. By acting as an optimization compiler, TensorRT takes trained networks from popular frameworks like PyTorch and TensorFlow and restructures them to execute efficiently on NVIDIA GPUs. This capability is crucial for running complex AI models in production environments where speed and efficiency are paramount.
The core function of TensorRT is to convert a trained neural network into an optimized "engine" specifically tuned for the target hardware. It achieves this through several advanced techniques:
TensorRT , büyük miktarda veriyi minimum gecikmeyle işleme yeteneği sayesinde, zamanlamanın kritik olduğu bilgisayar görme ve karmaşık AI görevlerine dayanan sektörlerde yaygın olarak TensorRT . .
Modern yapay zeka araçlarıyla TensorRT 'yi iş akışınıza entegre etmek çok kolay. TensorRT ultralytics package
provides a seamless method to convert standard PyTorch models into TensorRT engines. This allows users to leverage the
state-of-the-art architecture of Ultralytics YOLO26 with the
hardware acceleration of NVIDIA GPUs. For teams looking to manage their datasets and training pipelines before export,
the Ultralytics Platformu offers a comprehensive environment to prepare
models for such high-performance deployment.
Aşağıdaki örnek, bir YOLO26 modelini bir TensorRT dosyasına nasıl dışa aktaracağınızı gösterir (.engine) ve
bunu gerçek zamanlı çıkarım:
from ultralytics import YOLO
# Load the latest stable YOLO26 model (nano size)
model = YOLO("yolo26n.pt")
# Export the model to TensorRT format (creates 'yolo26n.engine')
# This step optimizes the computational graph for your specific GPU
model.export(format="engine")
# Load the optimized TensorRT engine for high-speed inference
trt_model = YOLO("yolo26n.engine")
# Run inference on an image source
results = trt_model("https://ultralytics.com/images/bus.jpg")
It is important to distinguish TensorRT from other terms often heard in the model deployment landscape:
For developers aiming to maximize the performance of their AI agents or vision systems, understanding the transition from a training framework to an optimized runtime like TensorRT is a key step in professional MLOps.
