Esplorate il ruolo vitale della CPU nell'AI e nel Machine Learning. Scoprite il suo utilizzo nella preparazione dei dati, nell'inferenza e come si confronta con le GPU/TPU.
A Central Processing Unit (CPU) is the primary component of a computer that acts as its "brain," responsible for interpreting and executing instructions from hardware and software. In the context of artificial intelligence (AI), the CPU plays a fundamental role in data handling, system orchestration, and executing inference, particularly on edge devices where power efficiency is critical. While specialized hardware like GPUs are often associated with the heavy lifting of training deep learning models, the CPU remains indispensable for the overall machine learning (ML) pipeline.
Although GPUs are celebrated for their massive parallelism during training, the CPU is the workhorse for many essential stages of the computer vision (CV) lifecycle. Its architecture, typically based on x86 (Intel, AMD) or ARM designs, is optimized for sequential processing and complex logic control.
Comprendere il panorama hardware è fondamentale per ottimizzare le operazioni di machine learning (MLOps). Questi processori differiscono in modo significativo nella loro architettura e nei casi d'uso ideali.
CPUs are frequently the hardware of choice for applications where cost, availability, and energy consumption outweigh the need for massive raw throughput.
Gli sviluppatori spesso testano i modelli sulle CPU per verificare la compatibilità con ambienti di elaborazione serverless o dispositivi a basso consumo energetico . Ultralytics consente di indirizzare facilmente la CPU, garantendo che l'applicazione funzioni ovunque.
L'esempio seguente mostra come caricare un modello leggero ed eseguire l'inferenza specificatamente sulla CPU:
from ultralytics import YOLO
# Load the lightweight YOLO26 nano model
# Smaller models are optimized for faster CPU execution
model = YOLO("yolo26n.pt")
# Run inference on an image, explicitly setting the device to 'cpu'
results = model.predict("https://ultralytics.com/images/bus.jpg", device="cpu")
# Print the detection results (bounding boxes)
print(results[0].boxes.xywh)
To further improve performance on Intel CPUs, developers can export their models to the OpenVINO format, which optimizes the neural network structure specifically for x86 architecture. For managing datasets and orchestrating these deployments, tools like the Ultralytics Platform simplify the workflow from annotation to edge execution.