Yolo 비전 선전
선전
지금 참여하기
용어집

LangChain

Learn how LangChain simplifies developing AI apps with LLMs. Explore RAG, agents, and chains, and see how to [integrate YOLO26](https://docs.ultralytics.com/models/yolo26/) for advanced multimodal workflows.

LangChain is an open-source framework designed to simplify the development of applications powered by large language models (LLMs). While LLMs like GPT-4 are powerful on their own, they often operate in isolation, lacking awareness of real-time data or specific business context. LangChain acts as a bridge, allowing developers to chain together various components—such as prompts, models, and external data sources—to create sophisticated, context-aware applications. By managing the complexity of these interactions, LangChain enables artificial intelligence (AI) systems to reason about problems and take actions based on dynamic inputs.

Core Components of LangChain

The framework is built around several modular concepts that work together to enhance Natural Language Processing (NLP) workflows.

  • Chains: The fundamental building block, a chain is a sequence of calls to an LLM or other utilities. For example, a simple chain might take a user's input, format it using a prompt engineering template, and pass it to a model to generate a response. More complex chains can sequence multiple calls, where the output of one step becomes the input for the next.
  • Agents: Unlike chains, which follow a hardcoded sequence, an AI agent uses an LLM as a reasoning engine to determine which actions to take and in what order. Agents can query APIs, search the web, or access databases to answer questions that require up-to-date knowledge.
  • Retrieval: To ground model responses in factual data, LangChain facilitates Retrieval-Augmented Generation (RAG). This involves fetching relevant documents from a vector database based on user queries and feeding them into the model's context window.
  • Memory: Standard LLMs are stateless, meaning they forget previous interactions. LangChain provides memory components that allow chatbots to persist context across a conversation, mimicking the continuity of a human dialog.

실제 애플리케이션

LangChain is instrumental in moving generative AI from experimental notebooks to production environments across various industries.

  1. Chat with Your Data (RAG): One of the most common applications is enterprise search. Businesses use LangChain to ingest internal documentation, PDFs, or technical manuals into a searchable index. When an employee asks a question, the system retrieves the relevant paragraph and feeds it to the LLM, ensuring the answer is accurate and grounded in company data rather than hallucinated. This significantly improves knowledge distillation within organizations.
  2. 다중 모달 분석: LangChain은 텍스트와 컴퓨터 비전(CV)과 같은 다른 모달리티를 결합한 워크플로를 조정할 수 있습니다. 예를 들어, 보안 시스템은 객체 감지를 통해 무단 인원을 식별한 후 LangChain 에이전트를 트리거하여 사건 보고서를 작성하고 이를 관리자에게 이메일로 발송할 수 있습니다.

컴퓨터 비전과 통합

구조화된 시각적 데이터와 언어적 추론 간의 시너지는 강력한 개발 분야입니다. 개발자는 Ultralytics 같은 고성능 모델을 활용하여 이미지에서 객체 수, 분류, 위치 등 상세 정보를 추출하고, 이 구조화된 데이터를 LangChain 워크플로에 전달하여 추가 분석이나 자연어 설명을 수행할 수 있습니다.

다음 Python 스니펫은 Ultralytics 사용하여 감지된 클래스 이름을 추출하고, 하류 언어 체인에 입력할 수 있는 텍스트 기반 컨텍스트를 생성하는 방법을 보여줍니다.

from ultralytics import YOLO

# Load the YOLO26 model to generate structured data for a chain
model = YOLO("yolo26n.pt")

# Run inference on an image URL
results = model("https://ultralytics.com/images/bus.jpg")

# Extract detection class names to feed into a LangChain prompt
detections = [model.names[int(c)] for c in results[0].boxes.cls]

# Format the output as a context string for an LLM
chain_input = f"The image contains the following objects: {', '.join(detections)}."
print(chain_input)

구분되는 핵심 용어

LangChain과 이를 통해 조정되는 기술들을 구분하는 것이 중요합니다:

  • LangChain vs. LLMs: LLM(예: OpenAI의 GPT-4 또는 Anthropic Claude)은 텍스트를 처리하고 생성하는 "두뇌"입니다. LangChain은 그 두뇌를 데이터 전처리 파이프라인, API 및 사용자 인터페이스에 연결하는 "비계" 또는 인프라입니다.
  • LangChain vs. Prompt Engineering: Prompt engineering focuses on crafting the optimal text input to get the best result from a model. LangChain automates the management of these prompts, allowing for dynamic prompt templates that are filled with data programmatically before being sent to the model.

For developers looking to build robust AI systems, exploring the official LangChain documentation provides deep technical dives, while the Ultralytics documentation offers the necessary tools to integrate state-of-the-art vision capabilities into these intelligent workflows. Additionally, users can leverage the Ultralytics Platform to manage the datasets and training pipelines that feed into these advanced multi-modal systems.

Ultralytics 커뮤니티 가입

AI의 미래에 동참하세요. 글로벌 혁신가들과 연결하고, 협력하고, 성장하세요.

지금 참여하기