Learn how LangChain simplifies developing AI apps with LLMs. Explore RAG, agents, and chains, and see how to [integrate YOLO26](https://docs.ultralytics.com/models/yolo26/) for advanced multimodal workflows.
LangChain is an open-source framework designed to simplify the development of applications powered by large language models (LLMs). While LLMs like GPT-4 are powerful on their own, they often operate in isolation, lacking awareness of real-time data or specific business context. LangChain acts as a bridge, allowing developers to chain together various components—such as prompts, models, and external data sources—to create sophisticated, context-aware applications. By managing the complexity of these interactions, LangChain enables artificial intelligence (AI) systems to reason about problems and take actions based on dynamic inputs.
The framework is built around several modular concepts that work together to enhance Natural Language Processing (NLP) workflows.
LangChain is instrumental in moving generative AI from experimental notebooks to production environments across various industries.
구조화된 시각적 데이터와 언어적 추론 간의 시너지는 강력한 개발 분야입니다. 개발자는 Ultralytics 같은 고성능 모델을 활용하여 이미지에서 객체 수, 분류, 위치 등 상세 정보를 추출하고, 이 구조화된 데이터를 LangChain 워크플로에 전달하여 추가 분석이나 자연어 설명을 수행할 수 있습니다.
다음 Python 스니펫은 Ultralytics 사용하여 감지된 클래스 이름을 추출하고, 하류 언어 체인에 입력할 수 있는 텍스트 기반 컨텍스트를 생성하는 방법을 보여줍니다.
from ultralytics import YOLO
# Load the YOLO26 model to generate structured data for a chain
model = YOLO("yolo26n.pt")
# Run inference on an image URL
results = model("https://ultralytics.com/images/bus.jpg")
# Extract detection class names to feed into a LangChain prompt
detections = [model.names[int(c)] for c in results[0].boxes.cls]
# Format the output as a context string for an LLM
chain_input = f"The image contains the following objects: {', '.join(detections)}."
print(chain_input)
LangChain과 이를 통해 조정되는 기술들을 구분하는 것이 중요합니다:
For developers looking to build robust AI systems, exploring the official LangChain documentation provides deep technical dives, while the Ultralytics documentation offers the necessary tools to integrate state-of-the-art vision capabilities into these intelligent workflows. Additionally, users can leverage the Ultralytics Platform to manage the datasets and training pipelines that feed into these advanced multi-modal systems.