Zeitreihenanalyse
Explore time series analysis to master forecasting and trend detection. Learn how to leverage [Ultralytics YOLO26](https://docs.ultralytics.com/models/yolo26/) to convert visual data into actionable temporal insights.
Time series analysis is a specific method of analyzing a sequence of data points collected over an interval of time.
In this process, analysts record data points at consistent intervals over a set period rather than just recording the
data points intermittently or randomly. Unlike static datasets used for standard
Image Classification, time series data adds a
temporal dimension, meaning the order of the data is crucial for understanding the underlying patterns. This technique
is fundamental to Data Analytics and is widely used
to forecast future events based on historical trends.
Core Components and Techniques
To effectively analyze time-based data, practitioners must identify the distinct components that make up the signal.
-
Trend Analysis: This involves identifying the long-term direction of the data. For example,
Linear Regression is often used to model
whether sales are generally increasing or decreasing over several years.
-
Seasonality Detection: Many datasets exhibit regular, predictable changes that recur every calendar
year. Retailers use seasonality analysis to
prepare for holiday spikes or weather-related buying habits.
-
Stationarity: A time series is said to be stationary if its statistical properties, such as mean
and variance, do not change over time. Techniques like the
Dickey-Fuller test help determine if
data needs transformation before modeling.
-
Noise Estimation: Random variations or "white noise" can obscure true patterns. Advanced
filtering or Autoencoders are used to separate
meaningful signals from random fluctuations.
KI/ML-Anwendungen in der realen Welt
Die Zeitreihenanalyse ist von entscheidender Bedeutung für Branchen, die genaue Prognosen benötigen, um den Betrieb zu optimieren und Risiken zu verringern.
Risiko.
-
Bedarfsprognosen im Einzelhandel: Einzelhändler nutzen
KI im Einzelhandel, um den Lagerbedarf vorherzusagen. Durch die
Analyse von Zeitreihendaten vergangener Verkäufe können Unternehmen ihre Lieferketten optimieren und sowohl Überbestände als auch
Lagerengpässe reduzieren. Tools wie Facebook Prophet werden häufig eingesetzt, um
die starken saisonalen Effekte in den Einzelhandelsdaten zu berücksichtigen.
-
Healthcare Vitals Monitoring: In the medical field,
AI in Healthcare systems continuously monitor
patient vitals such as heart rate and blood pressure. Time series algorithms can perform
Anomaly Detection to alert medical staff
immediately if a patient's metrics deviate from their normal historical baseline, potentially saving lives.
-
Vorausschauende Wartung: Produktionsstätten verwenden Sensoren, um über einen bestimmten Zeitraum Vibrations- oder Temperaturdaten
von Maschinen zu erfassen. Durch den Einsatz von
KI in der Fertigung können Unternehmen
Ausfälle von Anlagen vorhersagen, bevor sie auftreten, und so Ausfallzeiten minimieren.
Generierung von Zeitreihen aus Computer Vision
While time series analysis is distinct from
Computer Vision (CV)—which focuses on spatial
data like images—the two fields often intersect. A CV model can process video streams to generate time series data.
For example, an Object Counting system running on a
traffic camera produces a sequential count of cars per minute.
Das folgende Beispiel zeigt, wie Sie mit
Ultralytics track in einem Video track und so
visuelle Daten effektiv in eine Zeitreihe von Objektzählungen umwandeln können.
from ultralytics import YOLO
# Load the YOLO26 model for object tracking
model = YOLO("yolo26n.pt")
# Track objects in a video stream (generates time-series data)
# The 'stream=True' argument returns a generator for memory efficiency
results = model.track("https://docs.ultralytics.com/modes/track/", stream=True)
# Process frames sequentially to build a time series of counts
for i, r in enumerate(results):
if r.boxes.id is not None:
count = len(r.boxes.id)
print(f"Time Step {i}: {count} objects detected")
For managing datasets and training models that feed into these pipelines, users can leverage the
Ultralytics Platform, which simplifies the workflow from annotation to
deployment.
Modern Neural Architectures
Traditional statistical methods like
ARIMA (AutoRegressive Integrated Moving Average) are still popular,
but modern Deep Learning (DL) has introduced
powerful alternatives.
-
Recurrent Neural Networks (RNNs): Specifically designed for sequential data, a
Recurrent Neural Network (RNN)
maintains a "memory" of previous inputs, making it suitable for short-term dependencies.
-
Long Short-Term Memory (LSTM): To address the limitations of standard RNNs in remembering long
sequences, the
Long Short-Term Memory (LSTM)
architecture uses gates to control information flow, effectively modeling long-term temporal dependencies.
-
Transformers: Originally built for text, the
Transformer architecture and its attention mechanisms
are now state-of-the-art for forecasting complex time series data, often outperforming older recurrent models.
Abgrenzung zu verwandten Begriffen
Es ist wichtig, die Zeitreihenanalyse von der Modellierung von Sequenzen und der
Computer Vision.
-
Zeitreihen vs. Sequenzmodellierung: Während alle Zeitreihen Sequenzen sind, sind nicht alle Sequenzen Zeitreihen
.
Die natürliche Sprachverarbeitung (Natural Language Processing, NLP)
befasst sich mit Wortsequenzen, bei denen die Reihenfolge eine Rolle spielt, das Element „Zeit“ jedoch abstrakt ist. Die Zeitreihenanalyse
impliziert insbesondere, dass die Daten nach Zeit indiziert sind.
-
Zeitreihen vs. Computer Vision: CV befasst sich mit der Interpretation visueller Eingaben (Pixel).
Techniken wie Video Understanding schließen jedoch
die Lücke, indem sie der visuellen Analyse eine zeitliche Dimension hinzufügen und häufig
Transformatoren verwenden, um zu verstehen, wie sich visuelle Inhalte
im Laufe der Zeit verändern.