Scopri il problema del gradiente che svanisce nel deep learning, il suo impatto sulle reti neurali e le soluzioni efficaci come ReLU, ResNet e altro ancora.
The Vanishing Gradient problem is a significant challenge encountered during the training of deep artificial neural networks. It occurs when the gradients—the values that dictate how much the network's parameters should change—become incredibly small as they propagate backward from the output layer to the input layers. Because these gradients are essential for updating the model weights, their disappearance means the earlier layers of the network stop learning. This phenomenon effectively prevents the model from capturing complex patterns in the data, limiting the depth and performance of deep learning architectures.
To understand why this happens, it is helpful to look at the process of backpropagation. During training, the network calculates the error between its prediction and the actual target using a loss function. This error is then sent backward through the layers to adjust the weights. This adjustment relies on the chain rule of calculus, which involves multiplying the derivatives of activation functions layer by layer.
If a network uses activation functions like the sigmoid function or the hyperbolic tangent (tanh), the derivatives are often less than 1. When many of these small numbers are multiplied together in a deep network with dozens or hundreds of layers, the result approaches zero. You can visualize this like a game of "telephone" where a message is whispered down a long line of people; by the time it reaches the start of the line, the message has become inaudible, and the first person doesn't know what to say.
Il campo dell'IA ha sviluppato diverse strategie robuste per mitigare i gradienti di scomparsa, consentendo la creazione di modelli potenti come Ultralytics .
Sebbene derivino dallo stesso meccanismo sottostante (moltiplicazione ripetuta), i gradienti che svaniscono sono distinti dai gradienti che esplodono.
NaN (Not a Number). This is often fixed by
gradient clipping.
Il superamento dei gradienti di scomparsa è stato un prerequisito per il successo delle moderne applicazioni di IA.
I framework e i modelli moderni astraggono molte di queste complessità. Quando si addestra un modello come YOLO26, l'architettura include automaticamente componenti come l'attivazione SiLU e la normalizzazione batch per evitare che i gradienti scompaiano.
from ultralytics import YOLO
# Load the YOLO26 model (latest generation, Jan 2026)
# This architecture includes residual connections and modern activations
# that inherently prevent vanishing gradients.
model = YOLO("yolo26n.pt")
# Train the model on a dataset
# The optimization process remains stable due to the robust architecture
results = model.train(data="coco8.yaml", epochs=10)