了解推荐系统如何使用 AI 和机器学习来提供个性化建议、提高参与度并在线推动决策!
A recommendation system is an information filtering algorithm designed to predict a user's preference for specific items. These intelligent systems serve as the foundation of modern Artificial Intelligence (AI) applications, helping users navigate the overwhelming amount of content available online by curating personalized suggestions. By analyzing patterns in Big Data—such as purchase history, viewing habits, and user ratings—recommendation engines enhance user engagement and streamline decision-making processes. They are heavily utilized in environments where the variety of choices exceeds a user's ability to evaluate them all manually.
推荐引擎通常采用特定的 机器学习(ML)策略来生成相关建议。 相关建议。这三种主要方法包括
推荐系统的实际效用横跨各行各业,既能推动 客户体验 和业务收入。
现代推荐系统,尤其是视觉内容推荐系统的一项关键技术是使用 嵌入。嵌入是一个项目(如图像)在高维空间中的 项目(如图像)在高维空间中的数字表示。视觉上相似的项目会有相近的嵌入。 接近。
The following Python code demonstrates how to extract image embeddings using a pre-trained Ultralytics YOLO26 classification model and calculate their similarity using PyTorch.
import torch.nn.functional as F
from ultralytics import YOLO
# Load a YOLO26 classification model
model = YOLO("yolo26n-cls.pt")
# Generate embeddings for two images (returns a list of Results objects)
results = model.predict(["bus.jpg", "dog.jpg"], embed=[1000])
# Calculate cosine similarity between the two embeddings
# Higher score indicates greater visual similarity
similarity = F.cosine_similarity(results[0].probs.data, results[1].probs.data, dim=0)
print(f"Visual Similarity Score: {similarity.item():.4f}")
重要的是要将推荐系统与它们通常采用的底层技术区分开来:
部署有效的推荐系统会遇到很多障碍:
To build and train your own models for recommendation tasks, the Ultralytics Platform offers a comprehensive environment for dataset management and model training.