Explore how cognitive computing simulates human thought to solve complex problems. Learn to build advanced perception layers using [Ultralytics YOLO26](https://docs.ultralytics.com/models/yolo26/) and the [Ultralytics Platform](https://platform.ultralytics.com/) for intelligent decision-making.
Cognitive computing refers to the simulation of human thought processes in a computerized model. It involves self-learning systems that use data mining, pattern recognition, and natural language processing (NLP) to mimic the way the human brain works. The goal is not merely to process data, but to create automated systems capable of solving problems without constant human oversight. Unlike traditional programmatic computing, which relies on rigid logic trees, cognitive computing systems are probabilistic; they generate hypotheses, reasoned arguments, and recommendations from unstructured data, helping humans make better decisions in complex environments.
من المهم التمييز بين الحوسبة الإدراكية والمفاهيم ذات الصلة بالذكاء الاصطناعي لفهم نطاقها المحدد.
غالبًا ما يكون الإدراك البصري هو الخطوة الأولى في مسار الإدراك المعرفي. قبل أن يتمكن النظام من التفكير في بيئة ما، يجب أن يدركها. تعمل نماذج الرؤية الحديثة مثل YOLO26 كطبقة إدخال حسي، حيث تستخرج كائنات منظمة من بيانات فيديو غير منظمة. ثم يتم تمرير هذه البيانات المنظمة إلى محرك التفكير لاتخاذ القرارات.
يوضح المثال التالي كيفية استخدام ultralytics حزمة تعمل كطبقة الإدراك،
وتحدد الكائنات التي قد يحتاج النظام الإدراكي إلى track.
from ultralytics import YOLO
# Load the YOLO26 model to serve as the visual perception engine
model = YOLO("yolo26n.pt")
# Perform inference on an image to identify objects in the environment
results = model("https://ultralytics.com/images/bus.jpg")
# Extract detected classes to feed into a cognitive reasoning system
for r in results:
# Print the class names (e.g., 'person', 'bus') found in the scene
for c in r.boxes.cls:
print(model.names[int(c)])
يتطلب بناء نظام بيئي معرفي مجموعة من التقنيات المتقدمة التي تعمل في انسجام تام.
Cognitive computing is transforming industries by augmenting human expertise with machine speed and scale.
By integrating sensory inputs from models like Ultralytics YOLO26 with advanced reasoning capabilities, cognitive computing is paving the way for machines that not only compute but also comprehend. Managing the lifecycle of these complex models is streamlined through the Ultralytics Platform, which facilitates training, annotation, and deployment across diverse environments.