TensorRT ディープラーニングモデルを最適化し、NVIDIA GPU上でより高速で効率的な推論を実現。YOLO AIアプリケーションでリアルタイムのパフォーマンスを実現します。
TensorRT is a high-performance deep learning inference software development kit (SDK) developed by NVIDIA. It is designed to optimize neural network models for deployment, delivering low inference latency and high throughput for deep learning applications. By acting as an optimization compiler, TensorRT takes trained networks from popular frameworks like PyTorch and TensorFlow and restructures them to execute efficiently on NVIDIA GPUs. This capability is crucial for running complex AI models in production environments where speed and efficiency are paramount.
The core function of TensorRT is to convert a trained neural network into an optimized "engine" specifically tuned for the target hardware. It achieves this through several advanced techniques:
TensorRT 、膨大な量のデータを最小限の遅延で処理できるため、 コンピュータービジョンや複雑なAIタスクに依存し、 タイミングが極めて重要な産業分野で広く採用TensorRT 。
TensorRT ワークフローに統合するのは、最新のAIツールを使えば簡単だ。その ultralytics package
provides a seamless method to convert standard PyTorch models into TensorRT engines. This allows users to leverage the
state-of-the-art architecture of Ultralytics YOLO26 with the
hardware acceleration of NVIDIA GPUs. For teams looking to manage their datasets and training pipelines before export,
the Ultralytics offers a comprehensive environment to prepare
models for such high-performance deployment.
以下の例は、YOLO26モデルをTensorRT エンジンファイルにエクスポートする方法を示しています(.engine) そして
それを リアルタイム推論:
from ultralytics import YOLO
# Load the latest stable YOLO26 model (nano size)
model = YOLO("yolo26n.pt")
# Export the model to TensorRT format (creates 'yolo26n.engine')
# This step optimizes the computational graph for your specific GPU
model.export(format="engine")
# Load the optimized TensorRT engine for high-speed inference
trt_model = YOLO("yolo26n.engine")
# Run inference on an image source
results = trt_model("https://ultralytics.com/images/bus.jpg")
It is important to distinguish TensorRT from other terms often heard in the model deployment landscape:
For developers aiming to maximize the performance of their AI agents or vision systems, understanding the transition from a training framework to an optimized runtime like TensorRT is a key step in professional MLOps.