Learn how LangChain simplifies developing AI apps with LLMs. Explore RAG, agents, and chains, and see how to [integrate YOLO26](https://docs.ultralytics.com/models/yolo26/) for advanced multimodal workflows.
LangChain is an open-source framework designed to simplify the development of applications powered by large language models (LLMs). While LLMs like GPT-4 are powerful on their own, they often operate in isolation, lacking awareness of real-time data or specific business context. LangChain acts as a bridge, allowing developers to chain together various components—such as prompts, models, and external data sources—to create sophisticated, context-aware applications. By managing the complexity of these interactions, LangChain enables artificial intelligence (AI) systems to reason about problems and take actions based on dynamic inputs.
The framework is built around several modular concepts that work together to enhance Natural Language Processing (NLP) workflows.
LangChain is instrumental in moving generative AI from experimental notebooks to production environments across various industries.
Die Synergie zwischen strukturierten visuellen Daten und sprachlichem Denken ist ein vielversprechender Entwicklungsbereich. Entwickler können leistungsstarke Modelle wie Ultralytics nutzen, um detaillierte Informationen aus Bildern zu extrahieren – wie Objektanzahl, -klassen oder -standorte – und diese strukturierten Daten zur weiteren Analyse oder Beschreibung in natürlicher Sprache an einen LangChain-Workflow weiterleiten.
Das Folgende Python Snippet zeigt, wie man erkannte Klassennamen mit einem Ultralytics extrahiert und einen textbasierten Kontext erstellt, der in eine nachgelagerte Sprachkette eingespeist werden kann.
from ultralytics import YOLO
# Load the YOLO26 model to generate structured data for a chain
model = YOLO("yolo26n.pt")
# Run inference on an image URL
results = model("https://ultralytics.com/images/bus.jpg")
# Extract detection class names to feed into a LangChain prompt
detections = [model.names[int(c)] for c in results[0].boxes.cls]
# Format the output as a context string for an LLM
chain_input = f"The image contains the following objects: {', '.join(detections)}."
print(chain_input)
Es ist wichtig, LangChain von den Technologien zu unterscheiden, die es orchestriert:
For developers looking to build robust AI systems, exploring the official LangChain documentation provides deep technical dives, while the Ultralytics documentation offers the necessary tools to integrate state-of-the-art vision capabilities into these intelligent workflows. Additionally, users can leverage the Ultralytics Platform to manage the datasets and training pipelines that feed into these advanced multi-modal systems.