Yolo Vision Shenzhen
Shenzhen
Únete ahora
Glosario

LangChain

Learn how LangChain simplifies developing AI apps with LLMs. Explore RAG, agents, and chains, and see how to [integrate YOLO26](https://docs.ultralytics.com/models/yolo26/) for advanced multimodal workflows.

LangChain is an open-source framework designed to simplify the development of applications powered by large language models (LLMs). While LLMs like GPT-4 are powerful on their own, they often operate in isolation, lacking awareness of real-time data or specific business context. LangChain acts as a bridge, allowing developers to chain together various components—such as prompts, models, and external data sources—to create sophisticated, context-aware applications. By managing the complexity of these interactions, LangChain enables artificial intelligence (AI) systems to reason about problems and take actions based on dynamic inputs.

Core Components of LangChain

The framework is built around several modular concepts that work together to enhance Natural Language Processing (NLP) workflows.

  • Chains: The fundamental building block, a chain is a sequence of calls to an LLM or other utilities. For example, a simple chain might take a user's input, format it using a prompt engineering template, and pass it to a model to generate a response. More complex chains can sequence multiple calls, where the output of one step becomes the input for the next.
  • Agents: Unlike chains, which follow a hardcoded sequence, an AI agent uses an LLM as a reasoning engine to determine which actions to take and in what order. Agents can query APIs, search the web, or access databases to answer questions that require up-to-date knowledge.
  • Retrieval: To ground model responses in factual data, LangChain facilitates Retrieval-Augmented Generation (RAG). This involves fetching relevant documents from a vector database based on user queries and feeding them into the model's context window.
  • Memory: Standard LLMs are stateless, meaning they forget previous interactions. LangChain provides memory components that allow chatbots to persist context across a conversation, mimicking the continuity of a human dialog.

Aplicaciones en el mundo real

LangChain is instrumental in moving generative AI from experimental notebooks to production environments across various industries.

  1. Chat with Your Data (RAG): One of the most common applications is enterprise search. Businesses use LangChain to ingest internal documentation, PDFs, or technical manuals into a searchable index. When an employee asks a question, the system retrieves the relevant paragraph and feeds it to the LLM, ensuring the answer is accurate and grounded in company data rather than hallucinated. This significantly improves knowledge distillation within organizations.
  2. Análisis multimodal: LangChain puede organizar flujos de trabajo que combinan texto con otras modalidades, como la visión artificial (CV). Por ejemplo, un sistema de seguridad podría utilizar la detección de objetos para identificar al personal no autorizado y, a continuación, activar un agente de LangChain para que redacte un informe del incidente y lo envíe por correo electrónico a un supervisor.

Integración con la visión por ordenador

La sinergia entre los datos visuales estructurados y el razonamiento lingüístico es un potente ámbito de desarrollo. Los desarrolladores pueden utilizar modelos de alto rendimiento como Ultralytics para extraer información detallada de las imágenes, como recuentos de objetos, clases o ubicaciones, y pasar estos datos estructurados a un flujo de trabajo de LangChain para su posterior análisis o descripción en lenguaje natural.

Lo siguiente Python muestra cómo extraer nombres de clases detectadas utilizando un Ultralytics , creando un contexto basado en texto que se puede introducir en una cadena de lenguaje descendente.

from ultralytics import YOLO

# Load the YOLO26 model to generate structured data for a chain
model = YOLO("yolo26n.pt")

# Run inference on an image URL
results = model("https://ultralytics.com/images/bus.jpg")

# Extract detection class names to feed into a LangChain prompt
detections = [model.names[int(c)] for c in results[0].boxes.cls]

# Format the output as a context string for an LLM
chain_input = f"The image contains the following objects: {', '.join(detections)}."
print(chain_input)

Términos clave distintivos

Es importante diferenciar LangChain de las tecnologías que coordina:

  • LangChain frente a los LLM: El LLM (por ejemplo, el GPT-4 de OpenAI o el Claude Anthropic) es el «cerebro» que procesa y genera texto. LangChain es el «andamiaje» o la infraestructura que conecta ese cerebro con los procesos de preprocesamiento de datos, las API y las interfaces de usuario .
  • LangChain vs. Prompt Engineering: Prompt engineering focuses on crafting the optimal text input to get the best result from a model. LangChain automates the management of these prompts, allowing for dynamic prompt templates that are filled with data programmatically before being sent to the model.

For developers looking to build robust AI systems, exploring the official LangChain documentation provides deep technical dives, while the Ultralytics documentation offers the necessary tools to integrate state-of-the-art vision capabilities into these intelligent workflows. Additionally, users can leverage the Ultralytics Platform to manage the datasets and training pipelines that feed into these advanced multi-modal systems.

Únase a la comunidad Ultralytics

Únete al futuro de la IA. Conecta, colabora y crece con innovadores de todo el mundo

Únete ahora