X
Ultralytics YOLOv8.2 LibérationUltralytics YOLOv8.2 LibérationUltralytics YOLOv8.2 Flèche de déverrouillage
Contrôle vert
Lien copié dans le presse-papiers

Compilation et quantification de YOLOv5 pour de meilleures performances avec Deci

Optimise et déploie les modèles YOLOv5 avec la plateforme de Deci, en améliorant les performances jusqu'à 10 fois. Commence gratuitement et tire parti de l'optimisation automatique des modèles.

À Ultralytics , nous nous associons commercialement à d'autres startups pour nous aider à financer la recherche et le développement de nos formidables outils open-source, comme YOLOv5, afin qu'ils restent gratuits pour tout le monde. Cet article peut contenir des liens d'affiliation vers ces partenaires.

La plateforme Deci comprend des outils gratuits pour gérer, optimiser et déployer facilement tes modèles dans tout environnement de production. YOLOv5 modèles dans n'importe quel environnement de production. Deci prend en charge tous les frameworks DL populaires, tels que TensorFlow, PyTorch, Keras et ONNX. Tout ce dont tu as besoin, c'est de notre plateforme web ou de notre client Python pour l'exécuter à partir de ton code.

Pourquoi Deci ?

Tu peux utiliser Deci non seulement pour l'exportation mais aussi pour l'élagage et la quantification du modèle !

Deci propose une interface agréable pour l'exportation dans n'importe quel format et la comparaison des performances entre les modèles originaux et convertis. Les utilisateurs choisissent d'optimiser davantage leurs modèles par quantification.

Avec Deci, tu peux :

Améliore la performance de l'inférence jusqu'à 10 fois

‍Automatiquement, compile et quantifie tes modèles et évalue différents paramètres de production pour obtenir une meilleure latence, tout au long, et une réduction de la taille du modèle et de l'empreinte mémoire sur ton matériel.

‍Trouvele meilleur matériel d'inférence pour ton application.

‍Benchmarkeles performances de ton modèle sur divers appareils matériels (y compris edge) à l'aide d'un bouton. Élimine le besoin de configurer et de tester manuellement plusieurs matériels et paramètres de production.

‍Déployeravec quelques lignes de code

‍LeverageDeci's python-based inference engine. Compatible avec plusieurs cadres de travail et types de matériel.

Pour plus d'informations sur la plateforme Deci, visite le site web de Deci.

Première installation

Étape 1

Ouvre ton compte gratuit.

Commence avec Deci et Ultralytics YOLOv5

Étape 2

Pour commencer à optimiser ton modèle pré-entraîné YOLOv5 , tu dois le convertir au format ONNX . Voir YOLOv5 Export Tutorial pour savoir comment convertir ton modèle au format ONNX .

Étape 3

Va dans l'onglet "Labo" et clique sur le bouton "Nouveau modèle" en haut à droite de l'écran pour télécharger ton modèle. YOLOv5 ONNX modèle.

Convertir les modèles Ultralytics YOLOv5  en ONNX pour un déploiement futur avec Deci

Suis les étapes de l'assistant de téléchargement de modèle pour sélectionner ton matériel cible ainsi que la taille de lot et le niveau de quantification souhaités pour la compilation du modèle.

Ultralytics YOLOv5 compilation de modèles pour le déploiement avec Deci

Après avoir rempli les informations pertinentes, clique sur "Démarrer". La plateforme Deci effectuera automatiquement une optimisation de l'exécution de ton modèle YOLOv5 pour le matériel que tu as sélectionné, ainsi qu'une analyse comparative de ton modèle sur différents types de matériel. Ce processus dure environ 10 minutes.

Une fois cela fait, une nouvelle ligne apparaîtra sur ton écran sous le modèle de base que tu as précédemment téléchargé. Tu peux y voir la version optimisée de ton modèle pré-entraîné YOLOv5 .

Ultralytics YOLOv5 modèle optimisé pour le déploiement avec Deci

Qu'est-ce qu'on fait maintenant ?

Tu peux ensuite télécharger ton modèle optimisé en cliquant sur le bouton "Déployer".

Ultralytics YOLOv5 modèle prêt à être déployé avec Deci

Tu seras ensuite invité à télécharger ton modèle et tu recevras des instructions sur l'installation et l'utilisation d'Infery - le moteur d'inférence d'exécution de Deci.

L'utilisation d'Infery est facultative. Tu peux obtenir les fichiers bruts de python et les utiliser avec n'importe quel autre moteur d'inférence de ton choix.

Utilise Deci Infery pour déployer Ultralytics YOLOv5

Explore les résultats de l'optimisation et de l'analyse comparative dans l'onglet "Insights".

Optimisation avec Deci du modèle Ultralytics YOLOv5

Prêt à commencer ?

Avant de conclure, discutons de certains des avantages qu'offre Deci :

  • Optimise le débit et la latence de l'inférence de ton modèle sans compromettre la précision.
  • Permet d'optimiser les modèles à partir de tous les frameworks populaires.
  • Prend en charge les modèles ciblés sur n'importe quelle tâche d'apprentissage en profondeur.
  • Supports deployment on popular CPU and GPU machines
  • Compare l'adéquation de ton modèle sur différents hôtes matériels et fournisseurs de cloud.
  • Prépare les modèles téléchargés pour le service, l'inférence et le déploiement.

Comme tu viens de le voir, tu peux doubler les performances d'un modèle YOLOv5 en 15 minutes de temps global. La plateforme Deci est super facile et intuitive à utiliser.

Tu as des questions ? Rejoins notre communauté et laisse ta question aujourd'hui !

Logo FacebookLogo de TwitterLogo LinkedInSymbole du lien de copie

Lire la suite dans cette catégorie

Construisons ensemble le futur
de l'IA !

Commence ton voyage avec le futur de l'apprentissage automatique.