X
Ultralytics YOLOv8.2 LibérationUltralytics YOLOv8.2 LibérationUltralytics YOLOv8.2 Flèche de déverrouillage
Contrôle vert
Lien copié dans le presse-papiers

PatentPT : Recherche de brevets avec des solutions alimentées par le LLM

Explore PatentPT, une recherche de brevets avec des modèles linguistiques avancés. Dévoilé à YOLO VISION 2023, plonge dans les réflexions de Davit Buniatyan et explore les capacités de transformation de DeepLake.

Get ready to dive into the world of cutting-edge AI solutions with us as we unpack another insight from the YOLO VISION 2023 (YV23) event, powered by Ultralytics and held at Google for Startups Campus in Madrid.

Dans ce blog, nous allons explorer la conférence donnée par le fondateur d' Activeloop, Davit Buniatyan, qui nous fait découvrir la genèse de PatentPT, un modèle de langage avancé qui remodèle les capacités de recherche de brevets. 

Dévoiler PatentPT

Tu t'es déjà sentie dépassée par le volume des données sur les brevets et par le processus de recherche fastidieux ? Découvrons la genèse de PatentPT, un modèle linguistique innovant qui fait évoluer les capacités de recherche de brevets.

Dirigé par Davit Buniatyan, cet exposé dévoilera des informations utiles sur le réglage et le déploiement de grands modèles linguistiques (LLM) pour l'autocomplétion de brevets, la génération d'abrégés et de revendications, et les fonctions de recherche avancées dans un riche corpus de brevets.

Activeloop et DeepLake : Une couche de stockage de données unifiée pour l'IA

Avant de nous plonger dans les méandres de PatentPT, jetons un coup d'œil à la création d'Activeloop : DeepLake, la base de données pour l'IA. La pile de données de l'IA étant fragmentée entre divers systèmes de stockage, DeepLake apparaît comme un changeur de jeu, offrant une couche de stockage de données unifiée qui rationalise les flux de travail de l'IA.

Du stockage des métadonnées aux données non structurées et aux embeddings, DeepLake simplifie le processus et permet aux scientifiques des données de se concentrer sur l'entraînement des modèles ML sans avoir à se préoccuper de la gestion des données.

Exploration de l'architecture et des fonctionnalités de DeepLake

Maintenant, plongeons dans l'architecture et les fonctionnalités de DeepLake. Grâce à ses composants open-source et à sa conception sans serveur, DeepLake permet un stockage et un versionnage transparents des données sur le stockage objet tout en se connectant sans effort aux modèles ML. Il propose également Deep Memory, une fonctionnalité qui améliore la précision de la recherche sans altérer les embeddings.

Démonstration de la mémoire profonde : Améliorer la recherche de brevets

Davit nous a permis d'approfondir ce flux de travail grâce à une démonstration en direct présentant les prouesses de Deep Memory en matière de recherche de brevets. Nous avons eu un aperçu de première main de la façon dont Deep Memory permet d'améliorer la précision de 22 % avec des requêtes de moins d'une seconde pour une fraction du coût par rapport aux solutions traditionnelles.

Dis au revoir au défilement interminable des bases de données de brevets et bonjour aux résultats de recherche précis et rapides comme l'éclair !

La genèse de PatentPT : Du concept à la réalité

Tu t'es déjà demandé comment PatentPT a vu le jour ? Rembobinons l'horloge et examinons de plus près les étapes complètes suivies pour créer cette solution. De la formation et de l'affinage du modèle LLM à l'élaboration de fonctionnalités personnalisées et au déploiement d'API de recherche, Davit Buniatyan et l'équipe d'Activeloop ne négligent rien dans leur quête d'innovation en matière d'IA.

Libérer la puissance des LLM : L'avenir des solutions d'IA

Dans l'ensemble, PatentPT illustre le potentiel des solutions alimentées par le LLM dans des domaines spécialisés comme la recherche de brevets. L'engagement d'Activeloop en faveur de l'innovation, associé aux capacités de transformation de DeepLake, ouvre la voie à un avenir où les solutions d'IA libèrent le véritable potentiel des données non structurées, plus rapidement et à moindre coût que jamais.

Pour conclure 

Alors que nous continuons à repousser les limites de l'innovation en matière d'IA, il est essentiel de se rappeler que la véritable innovation ne réside pas seulement dans la technologie elle-même, mais dans la façon dont elle nous donne les moyens de résoudre les défis du monde réel et de conduire des changements significatifs. Rejoins notre communauté, consulte nos documents et notre dépôt Github pour rester au courant des dernières avancées ! 

Logo FacebookLogo de TwitterLogo LinkedInSymbole du lien de copie

Lire la suite dans cette catégorie

Construisons ensemble le futur
de l'IA !

Commence ton voyage avec le futur de l'apprentissage automatique.