Optimisez les modèles d'IA grâce à l'élagage : réduisez la complexité, améliorez l'efficacité et déployez plus rapidement sur les appareils périphériques sans sacrifier les performances.
Pruning is a strategic model optimization technique used to reduce the size and computational complexity of neural networks by removing unnecessary parameters. Much like a gardener trims dead or overgrown branches to help a tree thrive, pruning algorithms identify and eliminate redundant weights and biases that contribute little to a model's predictive power. The primary objective is to create a compressed, "sparse" model that maintains high accuracy while consuming significantly less memory and energy. This reduction is essential for improving inference latency, allowing advanced architectures to run efficiently on resource-constrained hardware like mobile phones and embedded devices.
Modern deep learning models are often over-parameterized, meaning they contain far more connections than necessary to solve a specific task. Pruning exploits this by removing connections that have values close to zero, under the assumption that they have a negligible impact on the output. After parameters are removed, the model typically undergoes a process of fine-tuning, where it is retrained briefly to adjust the remaining weights and recover any lost performance. This concept is closely related to the Lottery Ticket Hypothesis, which suggests that large networks contain smaller, highly efficient subnetworks capable of reaching similar accuracy.
Il existe deux grandes catégories de stratégies d'élagage :
La taille est indispensable pour permettre l'IA en périphérie dans divers secteurs où les ressources matérielles sont limitées :
While state-of-the-art models like YOLO26 are designed for efficiency, developers can apply pruning to further optimize layers using libraries like PyTorch. The following example demonstrates how to apply unstructured pruning to a convolutional layer.
import torch
import torch.nn.utils.prune as prune
# Initialize a standard convolutional layer
layer = torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3)
# Apply L1 unstructured pruning to remove 30% of weights with the lowest magnitude
prune.l1_unstructured(layer, name="weight", amount=0.3)
# Verify sparsity (percentage of zero parameters)
sparsity = 100.0 * float(torch.sum(layer.weight == 0)) / layer.weight.nelement()
print(f"Sparsity achieved: {sparsity:.2f}%")
Pour optimiser efficacement un modèle en vue de son déploiement, il est utile de distinguer l' élagage des autres stratégies :
Pour une gestion complète du cycle de vie, y compris la formation, l'annotation et le déploiement de modèles optimisés, les utilisateurs peuvent tirer parti de la Ultralytics . Cela simplifie le flux de travail, de la gestion des ensembles de données à l'exportation des modèles dans des formats adaptés au matériel, tels que ONNX ou TensorRT.