プルーニングでAIモデルを最適化—複雑さを軽減し、効率を高め、パフォーマンスを犠牲にすることなく、エッジデバイスへの展開を高速化します。
Pruning is a strategic model optimization technique used to reduce the size and computational complexity of neural networks by removing unnecessary parameters. Much like a gardener trims dead or overgrown branches to help a tree thrive, pruning algorithms identify and eliminate redundant weights and biases that contribute little to a model's predictive power. The primary objective is to create a compressed, "sparse" model that maintains high accuracy while consuming significantly less memory and energy. This reduction is essential for improving inference latency, allowing advanced architectures to run efficiently on resource-constrained hardware like mobile phones and embedded devices.
Modern deep learning models are often over-parameterized, meaning they contain far more connections than necessary to solve a specific task. Pruning exploits this by removing connections that have values close to zero, under the assumption that they have a negligible impact on the output. After parameters are removed, the model typically undergoes a process of fine-tuning, where it is retrained briefly to adjust the remaining weights and recover any lost performance. This concept is closely related to the Lottery Ticket Hypothesis, which suggests that large networks contain smaller, highly efficient subnetworks capable of reaching similar accuracy.
剪定戦略には主に二つのカテゴリーがある:
エッジAIをハードウェアリソースが限られる様々な産業で実現するには、 剪定が不可欠である:
While state-of-the-art models like YOLO26 are designed for efficiency, developers can apply pruning to further optimize layers using libraries like PyTorch. The following example demonstrates how to apply unstructured pruning to a convolutional layer.
import torch
import torch.nn.utils.prune as prune
# Initialize a standard convolutional layer
layer = torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3)
# Apply L1 unstructured pruning to remove 30% of weights with the lowest magnitude
prune.l1_unstructured(layer, name="weight", amount=0.3)
# Verify sparsity (percentage of zero parameters)
sparsity = 100.0 * float(torch.sum(layer.weight == 0)) / layer.weight.nelement()
print(f"Sparsity achieved: {sparsity:.2f}%")
モデルを効果的に最適化して デプロイするには、 プルーニングを他の手法と区別することが有用である:
包括的なライフサイクル管理(トレーニング、アノテーション、最適化モデルのデプロイを含む)には、 Ultralytics を活用できます。これにより、 データセット管理からONNXやPyTorch 3.0などのハードウェア対応フォーマットでのモデルエクスポートに至るワークフローが簡素化されます。 ONNX や TensorRTといったハードウェアに最適化された形式でのモデルエクスポートに至るまでのワークフローを簡素化します。