Yolo 深圳
深セン
今すぐ参加
用語集

ニューラルネットワーク(NN)

ニューラルネットワークのパワーをご覧ください。コンピュータビジョン、NLP、深層学習のブレークスルーなど、AIとMLのイノベーションの鍵となります。

A Neural Network (NN) is a computational model at the core of Artificial Intelligence (AI) designed to recognize patterns, interpret sensory data, and cluster information. Inspired by the biological structure of the human brain, these networks consist of interconnected nodes, or "neurons," organized into layers. While a biological brain uses chemical signals to communicate across synapses, a digital neural network uses mathematical operations to transmit information. These systems are the foundational technology behind modern Machine Learning (ML), enabling computers to solve complex problems like recognizing faces, translating languages, and driving autonomous vehicles without being explicitly programmed for every specific rule.

ニューラルネットワークとディープラーニングの比較

While the terms are often used interchangeably, it is important to distinguish between a basic Neural Network and Deep Learning (DL). The primary difference lies in depth and complexity. A standard or "shallow" neural network may have only one or two hidden layers between the input and output. In contrast, Deep Learning involves "deep" neural networks with dozens or even hundreds of layers. This depth enables feature extraction to happen automatically, allowing the model to understand hierarchical patterns—simple edges become shapes, and shapes become recognizable objects. For a deeper technical dive, MIT News explains deep learning and its evolution from basic networks.

How Neural Networks Learn

The process of "learning" in a neural network involves adjusting the internal parameters to minimize errors. Data enters through an input layer, passes through one or more hidden layers where calculations occur, and exits through an output layer as a prediction.

  • Weights and Biases: Each connection between neurons has a "weight" that determines the signal's strength. During training, the network adjusts these weights based on training data.
  • Activation Functions: To decide whether a neuron should "fire" or activate, the network uses an Activation Function like ReLU or Sigmoid. This introduces non-linearity, allowing the network to learn complex boundaries.
  • Backpropagation: When the network makes a prediction, it compares the result to the actual correct answer. If there is an error, an algorithm called Backpropagation sends a signal backward through the network to fine-tune the weights, improving accuracy over time.
  • Optimization: Algorithms such as Stochastic Gradient Descent (SGD) help find the optimal set of weights to minimize the loss function. You can read more about optimization algorithms on AWS.

実際のアプリケーション

ニューラルネットワークは、現代を定義する多くの技術の基盤となるエンジンである。

  1. コンピュータビジョン: コンピュータビジョン(CV)の分野では、 畳み込みニューラルネットワーク(CNN)と呼ばれる 特殊なネットワークが視覚データの分析に用いられる。 Ultralytics 先進モデルは、 リアルタイム物体検出のために深層ニューラルネットワーク構造を活用する。 これらのシステムは、作物の健康状態を監視する農業分野のAIや、 異常検知を行うセキュリティシステムにおいて極めて重要である。
  2. 自然言語処理:テキストを扱うタスクにおいて、 リカレントニューラルネットワーク(RNN) トランスフォーマーといったアーキテクチャは、 機械が人間の言語を理解する方法を革新しました。 これらのネットワークは機械翻訳ツールや バーチャルアシスタントを支えています。 医療分野におけるAIでは、 診療記録の文字起こしや患者データの分析を支援するなど、 これらの技術の影響を確認できます。
  3. Predictive Analytics: Businesses use neural networks for time-series analysis to forecast stock prices or inventory needs. IBM provides an excellent overview of neural networks in business analytics.

実践的な実施

Modern software libraries make it accessible to deploy neural networks without needing to write the mathematical operations from scratch. Tools like the Ultralytics allow users to train these networks on custom datasets easily. The following Python code demonstrates how to load a pre-trained neural network (specifically the state-of-the-art YOLO26 model) and run inference on an image using the ultralytics パッケージで提供される。

from ultralytics import YOLO

# Load a pretrained YOLO26 neural network model
model = YOLO("yolo26n.pt")

# Run inference on an image to detect objects
# The model processes the image through its layers to predict bounding boxes
results = model("https://ultralytics.com/images/bus.jpg")

# Display the results
results[0].show()

課題と考慮事項

While powerful, neural networks present specific challenges. They typically require large amounts of labeled data for Supervised Learning. Without sufficient data diversity, a network is prone to Overfitting, where it memorizes the training examples rather than learning to generalize. Additionally, deep neural networks are often referred to as "black boxes" because interpreting exactly how they arrived at a specific decision can be difficult, sparking research into Explainable AI (XAI). Organizations like the IEEE Standards Association are actively working on standards to ensure these powerful networks are used ethically and safely.

Ultralytics コミュニティに参加する

AIの未来を共に切り開きましょう。グローバルなイノベーターと繋がり、協力し、成長を。

今すぐ参加