AIにおけるシグモイド関数のパワーをご覧ください。非線形性を実現し、二値分類を支援し、機械学習の進歩を促進する方法を学びます。
シグモイド関数は、機械学習(ML) および深層学習(DL)の分野で広く用いられる基本的な数学的構成要素である。しばしば「スクワッシュ関数」とも呼ばれ、実数値を入力として受け取り、0から1の間の値へ写像する。この特徴的な「S」字型の曲線は、モデルの生の出力を解釈可能な確率値へ変換する上で非常に有用である。ニューラルネットワーク(NN)の文脈では、 シグモイド関数は活性化関数として機能し、 単純な線形関係を超えた複雑なパターンを学習可能にする非線形性を導入します。 深層隠れ層では他の関数にほぼ置き換えられたものの、 二値分類タスクにおける出力層の標準的な選択肢として 現在も用いられています。
シグモイド関数の本質は、入力データ(ロジットと呼ばれることが多い)を正規化された範囲に変換することにある。この変換は、事象の発生確率を予測することを目的とするタスクにおいて極めて重要である。出力を0から1の間に制限することで、関数は明確な確率スコアを提供する。
While Sigmoid was once the default for all layers, researchers discovered limitations like the vanishing gradient problem, where gradients become too small to update weights effectively in deep networks. This led to the adoption of alternatives for hidden layers.
The utility of the Sigmoid function extends across various industries where probability estimation is required.
You can observe how Sigmoid transforms data using PyTorch, a popular library for building deep learning models. This simple example demonstrates the "squashing" effect on a range of input values.
import torch
import torch.nn as nn
# Create a Sigmoid layer
sigmoid = nn.Sigmoid()
# Define input data (logits) ranging from negative to positive
input_data = torch.tensor([-5.0, -1.0, 0.0, 1.0, 5.0])
# Apply Sigmoid to squash values between 0 and 1
output = sigmoid(input_data)
print(f"Input: {input_data}")
print(f"Output: {output}")
# Output values near 0 for negative inputs, 0.5 for 0, and near 1 for positive inputs
For those looking to train models that utilize these concepts without writing low-level code, the Ultralytics Platform offers an intuitive interface to manage datasets and train state-of-the-art models like YOLO26. By handling the architectural complexities automatically, it allows users to focus on gathering high-quality training data for their specific computer vision applications.