SiLU(Swish)活性化関数が、物体検出や自然言語処理(NLP)などのAIタスクにおいて、ディープラーニングのパフォーマンスをどのように向上させるかをご覧ください。
The Sigmoid Linear Unit, commonly referred to as SiLU, is a highly effective activation function used in modern deep learning architectures to introduce non-linearity into neural networks. By determining how neurons process and pass information through the layers of a model, SiLU enables systems to learn complex patterns in data, functioning as a smoother and more sophisticated alternative to traditional step functions. Often associated with the term "Swish" from initial research on automated activation search, SiLU has become a standard in high-performance computer vision models, including the state-of-the-art YOLO26 architecture.
At its core, the SiLU function operates by multiplying an input value by its own Sigmoid transformation. Unlike simple threshold functions that abruptly switch a neuron between "on" and "off," SiLU provides a smooth curve that allows for more nuanced signal processing. This mathematical structure creates distinct characteristics that benefit the model training process:
SiLUは、精度と効率が最優先される多くの最先端AIソリューションに不可欠です。
SiLUを十分に理解するには、Ultralytics にある他の活性化関数との違いを区別することが有用です。
You can visualize how different activation functions transform data using the PyTorch library. The following code snippet demonstrates the difference between ReLU (which zeroes out negatives) and SiLU (which allows smooth negative flow).
import torch
import torch.nn as nn
# Input data: negative, zero, and positive values
data = torch.tensor([-2.0, 0.0, 2.0])
# Apply ReLU: Negatives become 0, positives stay unchanged
relu_out = nn.ReLU()(data)
print(f"ReLU: {relu_out}")
# Output: tensor([0., 0., 2.])
# Apply SiLU: Smooth curve, small negative value retained
silu_out = nn.SiLU()(data)
print(f"SiLU: {silu_out}")
# Output: tensor([-0.2384, 0.0000, 1.7616])
By retaining information in negative values and providing a smooth gradient, SiLU plays a pivotal role in the success of modern neural networks. Its adoption in architectures like YOLO26 underscores its importance in achieving state-of-the-art performance across diverse computer vision tasks.