Yolo 深圳
深セン
今すぐ参加
用語集

全景セグメンテーション

Panoptic segmentationが、AIアプリケーションにおける正確なピクセルレベルのシーン理解のために、セマンティックセグメンテーションとインスタンスセグメンテーションを統合する様子をご覧ください。

Panoptic segmentation is a comprehensive computer vision (CV) task that unifies two distinct forms of image analysis: semantic segmentation and instance segmentation. While traditional methods treat these tasks separately—either classifying background regions like "sky" or "grass" generally, or detecting specific objects like "car" or "person"—panoptic segmentation combines them into a single, cohesive framework. This approach assigns a unique value to every pixel in an image, providing a complete scene understanding that distinguishes between countable objects (referred to as "things") and amorphous background regions (referred to as "stuff"). By ensuring that every pixel is accounted for and classified, this technique mimics human visual perception more closely than isolated detection methods.

核心概念:モノと物

To fully grasp panoptic segmentation, it is helpful to understand the dichotomy of visual information it processes. The task splits the visual world into two primary categories:

  • Stuff Categories: These represent amorphous regions of similar texture or material that are not countable. Examples include roads, water, grass, sky, and walls. In a panoptic analysis, all pixels belonging to a "road" are grouped into a single semantic region because distinguishing between "road segment A" and "road segment B" is generally irrelevant.
  • Things Categories: These are countable objects with defined geometry and boundaries. Examples include pedestrians, vehicles, animals, and tools. Panoptic models must identify each "thing" as a unique entity, ensuring that two people standing side-by-side are recognized as separate instances (e.g., "Person A" and "Person B") rather than a merged blob.

This distinction is crucial for advanced artificial intelligence (AI) systems, allowing them to navigate environments while simultaneously interacting with specific objects.

How Panoptic Architectures Work

Modern panoptic segmentation architectures typically employ a powerful deep learning (DL) backbone, such as a Convolutional Neural Network (CNN) or a Vision Transformer (ViT), to extract rich feature representations from an image. The network generally splits into two branches or "heads":

  1. Semantic Head: This branch predicts a class label for every pixel, generating a dense map of the "stuff" in the scene.
  2. Instance Head: Simultaneously, this branch uses techniques similar to object detection to localize "things" and generate masks for them.

A fusion module or post-processing step then resolves conflicts between these outputs—for example, deciding if a pixel belongs to a "person" instance or the "background" wall behind them—to produce a final, non-overlapping panoptic segmentation map.

実際のアプリケーション

The holistic nature of panoptic segmentation makes it indispensable for industries where safety and context are paramount.

  • Autonomous Vehicles: Self-driving cars rely on panoptic perception to navigate safely. The semantic component identifies drivable surfaces (roads) and boundaries (sidewalks), while the instance component tracks dynamic obstacles like pedestrians and other vehicles. This unified view helps the vehicle's planning algorithms make safer decisions in complex traffic management scenarios.
  • 医療画像解析 デジタル病理学において、組織サンプルの解析には、一般的な組織構造(物質)のセグメンテーションと並行して、 特定の細胞タイプや腫瘍(対象物)の計数・測定が必要となる。この詳細な分解により、 医師は疾患の定量化と診断を正確に行うことができる。
  • ロボティクスサービスロボット 家庭や倉庫などの構造化されていない環境で動作するサービスロボットは、 移動可能な床面(背景)と、操作または回避が必要な物体(インスタンス)を 区別する必要がある。

UltralUltralyticsによるセグメンテーションの実装

While full panoptic training can be complex, developers can achieve high-precision instance segmentation—a critical component of the panoptic puzzle—using Ultralytics YOLO26. This state-of-the-art model offers real-time performance and is optimized for edge deployment.

Python 、事前学習済みセグメンテーションモデルを読み込み、 個別のオブジェクトを分離するための推論を実行する方法を示しています:

from ultralytics import YOLO

# Load the YOLO26 segmentation model
model = YOLO("yolo26n-seg.pt")

# Run inference on an image to segment individual instances
# The model identifies 'things' and generates pixel-perfect masks
results = model("https://ultralytics.com/images/bus.jpg")

# Display the resulting image with overlaid segmentation masks
results[0].show()

トレーニングデータの管理とアノテーションプロセスの自動化を目指すチーム向けに、Ultralytics データセット管理とモデルトレーニングのためのツール群を提供します。セグメンテーションタスクでは高品質なデータアノテーションが不可欠であり、モデルが効果的に学習するには正確なピクセルレベルのラベルが必要となります。

関連用語の区別

Understanding the nuances between segmentation types is vital for selecting the right model for your project:

  • Semantic Segmentation: Focuses only on classifying pixels into categories. It answers "what class is this pixel?" (e.g., tree, sky) but cannot separate individual objects of the same class. If two cars are overlapping, they appear as one large "car" blob.
  • Instance Segmentation: Focuses only on detecting and masking countable objects. It answers "which object is this?" but usually ignores the background context entirely.
  • パノプティックセグメンテーション:両方を組み合わせる。画像全体に対して「このピクセルは何なのか?」と「どのオブジェクトインスタンスに属するのか?」に答え、分類されないピクセルを一切残さない。

For further exploration of dataset formats used in these tasks, you can review the COCO dataset documentation, which is a standard benchmark for measuring segmentation performance.

Ultralytics コミュニティに参加する

AIの未来を共に切り開きましょう。グローバルなイノベーターと繋がり、協力し、成長を。

今すぐ参加