時系列分析
Explore time series analysis to master forecasting and trend detection. Learn how to leverage [Ultralytics YOLO26](https://docs.ultralytics.com/models/yolo26/) to convert visual data into actionable temporal insights.
Time series analysis is a specific method of analyzing a sequence of data points collected over an interval of time.
In this process, analysts record data points at consistent intervals over a set period rather than just recording the
data points intermittently or randomly. Unlike static datasets used for standard
Image Classification, time series data adds a
temporal dimension, meaning the order of the data is crucial for understanding the underlying patterns. This technique
is fundamental to Data Analytics and is widely used
to forecast future events based on historical trends.
Core Components and Techniques
To effectively analyze time-based data, practitioners must identify the distinct components that make up the signal.
-
Trend Analysis: This involves identifying the long-term direction of the data. For example,
Linear Regression is often used to model
whether sales are generally increasing or decreasing over several years.
-
Seasonality Detection: Many datasets exhibit regular, predictable changes that recur every calendar
year. Retailers use seasonality analysis to
prepare for holiday spikes or weather-related buying habits.
-
Stationarity: A time series is said to be stationary if its statistical properties, such as mean
and variance, do not change over time. Techniques like the
Dickey-Fuller test help determine if
data needs transformation before modeling.
-
Noise Estimation: Random variations or "white noise" can obscure true patterns. Advanced
filtering or Autoencoders are used to separate
meaningful signals from random fluctuations.
現実世界のAI/MLアプリケーション
時系列分析は、オペレーションを最適化し、リスクを軽減するために正確な予測を必要とする産業にとって重要である。
リスクを軽減するために正確な予測を必要とする産業にとって、時系列分析は非常に重要です。
-
小売業における需要予測: 小売業者はAIを活用し、在庫要件を予測します。過去の販売時系列データを分析することで、企業はサプライチェーンを最適化し、過剰在庫と品切れの両方を削減できます。Facebook Prophetのようなツールは、小売データに見られる強い季節性を処理するためによく採用されます。
-
Healthcare Vitals Monitoring: In the medical field,
AI in Healthcare systems continuously monitor
patient vitals such as heart rate and blood pressure. Time series algorithms can perform
Anomaly Detection to alert medical staff
immediately if a patient's metrics deviate from their normal historical baseline, potentially saving lives.
-
予知保全:製造工場ではセンサーを用いて機械の振動や温度データを継続的に収集します。製造分野におけるAIの応用により、企業は設備故障を事前に予測し、ダウンタイムを最小限に抑えることが可能となります。
コンピュータ・ビジョンから時系列を生成する
While time series analysis is distinct from
Computer Vision (CV)—which focuses on spatial
data like images—the two fields often intersect. A CV model can process video streams to generate time series data.
For example, an Object Counting system running on a
traffic camera produces a sequential count of cars per minute.
以下の例は、Ultralytics を使用して動画内のtrack 、視覚データをオブジェクト数の時系列データに効果的に変換する方法を示しています。
from ultralytics import YOLO
# Load the YOLO26 model for object tracking
model = YOLO("yolo26n.pt")
# Track objects in a video stream (generates time-series data)
# The 'stream=True' argument returns a generator for memory efficiency
results = model.track("https://docs.ultralytics.com/modes/track/", stream=True)
# Process frames sequentially to build a time series of counts
for i, r in enumerate(results):
if r.boxes.id is not None:
count = len(r.boxes.id)
print(f"Time Step {i}: {count} objects detected")
For managing datasets and training models that feed into these pipelines, users can leverage the
Ultralytics Platform, which simplifies the workflow from annotation to
deployment.
Modern Neural Architectures
Traditional statistical methods like
ARIMA (AutoRegressive Integrated Moving Average) are still popular,
but modern Deep Learning (DL) has introduced
powerful alternatives.
-
Recurrent Neural Networks (RNNs): Specifically designed for sequential data, a
Recurrent Neural Network (RNN)
maintains a "memory" of previous inputs, making it suitable for short-term dependencies.
-
Long Short-Term Memory (LSTM): To address the limitations of standard RNNs in remembering long
sequences, the
Long Short-Term Memory (LSTM)
architecture uses gates to control information flow, effectively modeling long-term temporal dependencies.
-
Transformers: Originally built for text, the
Transformer architecture and its attention mechanisms
are now state-of-the-art for forecasting complex time series data, often outperforming older recurrent models.
関連用語との区別
時系列分析を シーケンスモデリングやコンピュータビジョンと区別することは重要である。
コンピュータビジョン
-
時系列とシーケンスモデリング:すべての時系列はシーケンスであるが、すべてのシーケンスが時系列であるとは限らない。
自然言語処理(NLP)は、順序が重要であるものの「時間」要素が抽象的な単語のシーケンスを扱う。時系列分析は、データが時間軸でインデックス付けされていることを特に意味する。
-
時系列 vs. コンピュータビジョン:CVは視覚入力(ピクセル)の解釈を扱う。しかし、
ビデオ理解のような技術は、視覚分析に時間的次元を加えることで
そのギャップを埋める。多くの場合、トランスフォーマーを用いて
視覚コンテンツが時間とともにどのように変化するかを理解する。