Yolo 深圳
深セン
今すぐ参加
用語集

トークン

Explore how tokens act as the atomic units of AI processing. Learn how the [Ultralytics Platform](https://platform.ultralytics.com) uses tokens for NLP and computer vision.

In the sophisticated architecture of modern artificial intelligence, a token represents the fundamental, atomic unit of information that a model processes. Before an algorithm can interpret a sentence, analyze a software script, or recognize objects in an image, the raw input data must be broken down into these discrete, standardized elements. This segmentation is a pivotal step in data preprocessing, transforming unstructured inputs into a numerical format that neural networks can efficiently compute. While humans perceive language as a continuous stream of thoughts or images as seamless visual scenes, computational models require these granular building blocks to perform operations like pattern recognition and semantic analysis.

トークン vs. トークン化

To grasp the mechanics of machine learning, it is essential to distinguish between the data unit and the process used to create it. This differentiation prevents confusion when designing data pipelines and preparing training material on the Ultralytics Platform.

  • Tokenization: This is the algorithmic process (the verb) of splitting raw data into pieces. For text, this might involve using libraries like the Natural Language Toolkit (NLTK) to determine where one unit ends and another begins.
  • Token: This is the resulting output (the noun). It is the actual chunk of data—such as a word, a subword, or an image patch—that is eventually mapped to a numerical vector known as an embedding.

異なるAI領域におけるトークン

The nature of a token varies significantly depending on the modality of the data being processed, particularly between textual and visual domains.

自然言語処理におけるテキスト・トークン

In the field of Natural Language Processing (NLP), tokens are the inputs for Large Language Models (LLMs). Early approaches mapped strictly to whole words, but modern architectures utilize subword algorithms like Byte Pair Encoding (BPE). This method allows models to handle rare words by breaking them into meaningful syllables, balancing vocabulary size with semantic coverage. For instance, the word "unhappiness" might be tokenized into "un", "happi", and "ness".

コンピュータ・ビジョンにおける視覚的トークン

The concept of tokenization has expanded into computer vision with the advent of the Vision Transformer (ViT). Unlike traditional convolutional networks that process pixels in sliding windows, Transformers divide an image into a grid of fixed-size patches (e.g., 16x16 pixels). Each patch is flattened and treated as a distinct visual token. This approach enables the model to use self-attention mechanisms to understand the relationship between distant parts of an image, similar to how Google Research originally applied transformers to text.

実際のアプリケーション

トークンは、無数のアプリケーションにおいて、人間のデータと機械知能の間の架け橋として機能する。

  1. オープンボキャブラリ物体検出: YOLO先進モデルは、テキストトークンと視覚特徴が相互作用するマルチモーダル手法を採用する。 ユーザーはカスタムテキストプロンプト(例:「青いヘルメット」)を入力でき、 モデルはこれをトークン化し画像内の物体と照合する。 これによりゼロショット学習が可能となり、 明示的に学習されていない物体の検出を実現する。
  2. 生成AI:チャットボットなどのテキスト生成システムでは、AIはシーケンス内の次のトークンの確率を予測することで動作する。最も可能性の高い後続トークンを反復的に選択することで、システムは一貫性のある文章や段落を構築し、自動化されたカスタマーサポートから仮想アシスタントに至るまでのツールを支えている。

Python :検出のためのテキストトークンの使用

以下のコードスニペットは、 ultralytics package uses text tokens to guide オブジェクト検出. While the state-of-the-art YOLO26 is recommended for high-speed, fixed-class inference, the YOLO-World architecture uniquely allows users to define classes as text tokens at runtime.

from ultralytics import YOLO

# Load a pre-trained YOLO-World model capable of understanding text tokens
model = YOLO("yolov8s-world.pt")

# Define specific classes; these text strings are tokenized internally
# The model will look specifically for these "tokens" in the visual data
model.set_classes(["bus", "backpack"])

# Run prediction on an image using the defined tokens
results = model.predict("https://ultralytics.com/images/bus.jpg")

# Display the results showing only the tokenized classes
results[0].show()

Understanding tokens is fundamental to navigating the landscape of generative AI and advanced analytics. Whether enabling a chatbot to converse fluently or helping a vision system distinguish between subtle object classes, tokens remain the essential currency of machine intelligence used by frameworks like PyTorch and TensorFlow.

Ultralytics コミュニティに参加する

AIの未来を共に切り開きましょう。グローバルなイノベーターと繋がり、協力し、成長を。

今すぐ参加