Yolo Vision Shenzhen
Shenzhen
Únete ahora
Glosario

Token

Explore how tokens act as the atomic units of AI processing. Learn how the [Ultralytics Platform](https://platform.ultralytics.com) uses tokens for NLP and computer vision.

In the sophisticated architecture of modern artificial intelligence, a token represents the fundamental, atomic unit of information that a model processes. Before an algorithm can interpret a sentence, analyze a software script, or recognize objects in an image, the raw input data must be broken down into these discrete, standardized elements. This segmentation is a pivotal step in data preprocessing, transforming unstructured inputs into a numerical format that neural networks can efficiently compute. While humans perceive language as a continuous stream of thoughts or images as seamless visual scenes, computational models require these granular building blocks to perform operations like pattern recognition and semantic analysis.

Token frente a Tokenización

To grasp the mechanics of machine learning, it is essential to distinguish between the data unit and the process used to create it. This differentiation prevents confusion when designing data pipelines and preparing training material on the Ultralytics Platform.

  • Tokenization: This is the algorithmic process (the verb) of splitting raw data into pieces. For text, this might involve using libraries like the Natural Language Toolkit (NLTK) to determine where one unit ends and another begins.
  • Token: This is the resulting output (the noun). It is the actual chunk of data—such as a word, a subword, or an image patch—that is eventually mapped to a numerical vector known as an embedding.

Tokens en diferentes dominios de IA

The nature of a token varies significantly depending on the modality of the data being processed, particularly between textual and visual domains.

Tokens de texto en PNL

In the field of Natural Language Processing (NLP), tokens are the inputs for Large Language Models (LLMs). Early approaches mapped strictly to whole words, but modern architectures utilize subword algorithms like Byte Pair Encoding (BPE). This method allows models to handle rare words by breaking them into meaningful syllables, balancing vocabulary size with semantic coverage. For instance, the word "unhappiness" might be tokenized into "un", "happi", and "ness".

Fichas visuales en visión por ordenador

The concept of tokenization has expanded into computer vision with the advent of the Vision Transformer (ViT). Unlike traditional convolutional networks that process pixels in sliding windows, Transformers divide an image into a grid of fixed-size patches (e.g., 16x16 pixels). Each patch is flattened and treated as a distinct visual token. This approach enables the model to use self-attention mechanisms to understand the relationship between distant parts of an image, similar to how Google Research originally applied transformers to text.

Aplicaciones en el mundo real

Los tokens actúan como puente entre los datos humanos y la inteligencia artificial en innumerables aplicaciones.

  1. Detección de objetos con vocabulario abierto: Los modelos avanzados como YOLO utilizan un enfoque multimodal en el que los tokens de texto interactúan con las características visuales. El usuario puede introducir indicaciones de texto personalizadas (por ejemplo, «casco azul»), que el modelo tokeniza y compara con los objetos de la imagen. Esto permite el aprendizaje sin disparos, lo que permite la detección de objetos para los que el modelo no ha sido entrenado explícitamente.
  2. IA generativa: En sistemas de generación de texto como los chatbots, la IA opera prediciendo la probabilidad del siguiente token en una secuencia. Al seleccionar iterativamente el token posterior más probable, el sistema construye oraciones y párrafos coherentes, impulsando herramientas que van desde la atención al cliente automatizada hasta los asistentes virtuales.

Python : uso de tokens de texto para la detección

El siguiente fragmento de código muestra cómo el ultralytics package uses text tokens to guide detección de objetos. While the state-of-the-art YOLO26 is recommended for high-speed, fixed-class inference, the YOLO-World architecture uniquely allows users to define classes as text tokens at runtime.

from ultralytics import YOLO

# Load a pre-trained YOLO-World model capable of understanding text tokens
model = YOLO("yolov8s-world.pt")

# Define specific classes; these text strings are tokenized internally
# The model will look specifically for these "tokens" in the visual data
model.set_classes(["bus", "backpack"])

# Run prediction on an image using the defined tokens
results = model.predict("https://ultralytics.com/images/bus.jpg")

# Display the results showing only the tokenized classes
results[0].show()

Understanding tokens is fundamental to navigating the landscape of generative AI and advanced analytics. Whether enabling a chatbot to converse fluently or helping a vision system distinguish between subtle object classes, tokens remain the essential currency of machine intelligence used by frameworks like PyTorch and TensorFlow.

Únase a la comunidad Ultralytics

Únete al futuro de la IA. Conecta, colabora y crece con innovadores de todo el mundo

Únete ahora