K-Means Clustering
Aprenda sobre K-Means Clustering, un algoritmo clave de aprendizaje no supervisado para agrupar datos en clústeres. ¡Explore su proceso, aplicaciones y comparaciones!
K-Means Clustering is a fundamental and widely used algorithm in the field of
unsupervised learning designed to uncover
hidden structures within unlabeled data. Its primary
objective is to partition a dataset into distinct subgroups, known as clusters, such that data points within the same
group are as similar as possible, while those in different groups are distinct. As a cornerstone of
data mining and exploratory analysis, K-Means empowers
data scientists to automatically organize complex information into manageable categories without the need for
predefined labels or human supervision.
Cómo funciona el algoritmo
The operation of K-Means is iterative and relies on distance metrics to determine the optimal grouping of the
training data. The algorithm operates by organizing
items into K clusters, where each item belongs to the cluster with the nearest mean, or centroid. This
process minimizes the variance within each group. The workflow
generally follows these steps:
-
Inicialización: El algoritmo selecciona K puntos iniciales como centroides. Estos pueden elegirse
aleatoriamente o mediante métodos optimizados como k-means++ para acelerar
la convergencia.
-
Asignación: cada punto de datos del conjunto de datos se asigna al centroide más cercano basándose en una
métrica de distancia específica, normalmente la
distancia euclidiana.
-
Actualización: Los centroides se recalculan tomando la media (promedio) de todos los puntos de datos asignados a
ese clúster.
-
Iteración: Los pasos 2 y 3 se repiten hasta que los centroides ya no se mueven significativamente o se alcanza un número máximo
de iteraciones.
Determinar el número correcto de clústeres (K) es un aspecto crítico del uso de este algoritmo. Los profesionales
suelen utilizar técnicas como el método del codo o
analizar la
puntuación de silueta
para evaluar lo bien separados que están los clústeres resultantes.
Aplicaciones reales de la IA
La agrupación por métodos K-Means es muy versátil y resulta útil en diversos sectores para la simplificación y el
preprocesamiento de datos.
-
Image Compression and Color Quantization: In
computer vision (CV), K-Means helps reduce the
file size of images by clustering pixel colors. By grouping thousands of colors into a smaller set of dominant
colors, the algorithm effectively performs
dimensionality reduction while
preserving the visual structure of the image. This technique is often used before training advanced
object detection models to normalize input data.
-
Customer Segmentation: Businesses leverage clustering to group customers based on purchasing
history, demographics, or website behavior. This allows for targeted marketing strategies, a key component of
AI in retail solutions. By identifying high-value
shoppers or churn risks, companies can tailor their messaging effectively.
-
Anomaly Detection: By learning the structure of "normal" data clusters, systems can
identify outliers that fall far from any centroid. This is
valuable for fraud detection in finance and
anomaly detection in network security, helping
to flag suspicious activities that deviate from standard patterns.
-
Anchor Box Generation: Historically, object detectors like older YOLO versions utilized K-Means to
calculate optimal anchor boxes from training
datasets. While modern models like YOLO26 utilize advanced
anchor-free methods, understanding K-Means remains relevant to the evolution of detection architectures.
Ejemplo de aplicación
While deep learning frameworks like the Ultralytics Platform handle
complex training pipelines, K-Means is often used for analyzing dataset statistics. The following Python snippet
demonstrates how to cluster 2D coordinates—simulating object centroids—using the popular
Scikit-learn library.
import numpy as np
from sklearn.cluster import KMeans
# Simulated coordinates of detected objects (e.g., from YOLO26 inference)
points = np.array([[10, 10], [12, 11], [100, 100], [102, 101], [10, 12], [101, 102]])
# Initialize K-Means to find 2 distinct groups (clusters)
kmeans = KMeans(n_clusters=2, random_state=0, n_init="auto").fit(points)
# Output the cluster labels (0 or 1) for each point
print(f"Cluster Labels: {kmeans.labels_}")
# Output: [1 1 0 0 1 0] -> Points near (10,10) are Cluster 1, near (100,100) are Cluster 0
Comparación con algoritmos afines
Es importante distinguir K-Means de otros algoritmos con nombres o funciones similares para garantizar que
se seleccione la herramienta correcta para un proyecto.
-
K-Means frente a K-Nearest Neighbors (KNN): A menudo se confunden debido a la «K» de sus
nombres. K-Means es un algoritmo no supervisado que se utiliza para agrupar datos sin etiquetar. Por el contrario,
K-Nearest Neighbors (KNN) es un
algoritmo de aprendizaje supervisado que se utiliza para la
clasificación y regresión de imágenes, y que se basa
en datos etiquetados para realizar predicciones basadas en la clase mayoritaria de vecinos.
-
K-Means vs. DBSCAN: While both cluster data, K-Means assumes clusters are spherical and requires
the number of clusters to be defined beforehand.
DBSCAN
groups data based on density, can find clusters of arbitrary shapes, and handles noise better. This makes DBSCAN
superior for complex spatial data found in datasets with
irregular structures where the number of clusters is unknown.