Explore how Constitutional AI aligns models with ethical principles. Learn how to implement safety checks in computer vision using YOLO26 for more reliable AI.
Constitutional AI is a method for training artificial intelligence systems to align with human values by providing them with a set of high-level principles—a "constitution"—rather than relying solely on extensive human feedback on individual outputs. This approach essentially teaches the AI model to critique and revise its own behavior based on a predefined set of rules, such as "be helpful," "be harmless," and "avoid discrimination." By embedding these ethical guidelines directly into the training process, developers can create systems that are safer, more transparent, and easier to scale than those dependent on manual Reinforcement Learning from Human Feedback (RLHF).
The core innovation of Constitutional AI lies in its two-phase training process, which automates the alignment of models. Unlike traditional supervised learning, where humans must label every correct response, Constitutional AI uses the model itself to generate training data.
Si bien la IA constitucional se originó en el contexto de los modelos de lenguaje grandes (LLM) desarrollados por organizaciones como Anthropic, sus principios son cada vez más relevantes para tareas de aprendizaje automático más amplias, incluida la visión artificial (CV).
Si bien el entrenamiento completo de IA constitucional implica bucles de retroalimentación complejos, los desarrolladores pueden aplicar el concepto de «controles constitucionales» durante la inferencia para filtrar los resultados basándose en políticas de seguridad . El siguiente ejemplo muestra el uso de YOLO26 para detect y aplicar una regla de seguridad para filtrar las detecciones de baja confianza, imitando una constitución de fiabilidad.
from ultralytics import YOLO
# Load the YOLO26 model (latest stable Ultralytics release)
model = YOLO("yolo26n.pt")
# Run inference on an image
results = model("https://ultralytics.com/images/bus.jpg")
# Apply a "constitutional" safety check: Only accept high-confidence detections
for result in results:
# Filter boxes with confidence > 0.5 to ensure reliability
safe_boxes = [box for box in result.boxes if box.conf > 0.5]
print(f"Safety Check Passed: {len(safe_boxes)} reliable objects detected.")
# Further processing would only use 'safe_boxes'
It is important to distinguish Constitutional AI from standard Reinforcement Learning from Human Feedback (RLHF).
A medida que los modelos evolucionan hacia la Inteligencia General Artificial (AGI), crece la importancia de estrategias de alineación sólidas como la IA Constitucional. Estos métodos son esenciales para cumplir las normas emergentes de organismos como el Instituto de Seguridad de la IA del NIST.
The Ultralytics Platform offers tools to manage data governance and model monitoring, facilitating the creation of responsible AI systems. By integrating these ethical considerations into the lifecycle of AI development—from data collection to model deployment—organizations can mitigate risks and ensure their technologies contribute positively to society.