Yolo Vision Shenzhen
Shenzhen
Únete ahora
Glosario

Cabezal de Detección

Descubra el papel fundamental de los cabezales de detección en la detección de objetos, refinando los mapas de características para identificar con precisión las ubicaciones y clases de los objetos.

A detection head acts as the final decision-making layer in an object detection neural network architecture. While the earlier layers of the model are responsible for understanding the shapes, textures, and features within an image, the detection head is the specific component that interprets this information to predict exactly what objects are present and where they are located. It transforms the abstract, high-level data produced by the feature extractor into actionable results, typically outputting a set of bounding boxes enclosing identified objects along with their corresponding class labels and confidence scores.

Distinguir la cabeza de la columna vertebral y el cuello

To fully grasp the function of a detection head, it is helpful to visualize modern detectors as being composed of three primary stages, each serving a distinct purpose in the computer vision (CV) pipeline:

  • Backbone: This is the initial part of the network, often a Convolutional Neural Network (CNN) like ResNet or CSPNet. It processes the raw input image to create feature maps that represent visual patterns.
  • Neck: Sitting between the backbone and the head, the neck refines and combines features from different scales. Architectures like the Feature Pyramid Network (FPN) ensure the model can detect objects of varying sizes by aggregating context.
  • Head: The final component that consumes the refined features from the neck. It performs the actual task of classification (what is it?) and regression (where is it?).

Evolución: basado en anclajes frente a sin anclajes

The design of detection heads has evolved significantly to improve speed and accuracy, particularly with the transition from traditional methods to modern real-time inference models.

Aplicaciones en el mundo real

The precision of the detection head is critical for deploying artificial intelligence (AI) in safety-critical and industrial environments. Users can easily annotate data and train these specialized heads using the Ultralytics Platform.

  • Conducción autónoma: en la IA para automoción, el cabezal de detección se encarga de distinguir entre peatones, semáforos y otros vehículos en tiempo real. Un cabezal altamente optimizado garantiza que la latencia de inferencia se mantenga lo suficientemente baja como para que el vehículo reaccione al instante.
  • Diagnóstico médico: En el análisis de imágenes médicas, los cabezales de detección se ajustan con precisión para localizar anomalías como tumores en resonancias magnéticas. La rama de regresión debe ser extremadamente precisa para delinear los límites exactos de una lesión, ayudando a los médicos en soluciones sanitarias.

Ejemplo de código

The following example demonstrates how to load a YOLO26 model and inspect the output of its detection head. When inference runs, the head processes the image and returns the final boxes containing coordinates and class IDs.

from ultralytics import YOLO

# Load the YOLO26n model (nano version)
model = YOLO("yolo26n.pt")

# Run inference on an image to utilize the detection head
results = model("https://ultralytics.com/images/bus.jpg")

# The detection head outputs are stored in results[0].boxes
for box in results[0].boxes:
    # Print the bounding box coordinates and the predicted class
    print(f"Class: {int(box.cls)}, Coordinates: {box.xywh.numpy()}")

This interaction highlights how the detection head translates complex neural network activations into readable data that developers can use for downstream tasks like object tracking or counting.

Únase a la comunidad Ultralytics

Únete al futuro de la IA. Conecta, colabora y crece con innovadores de todo el mundo

Únete ahora