Learn how the Extended Kalman Filter (EKF) handles non-linear systems for accurate object tracking and sensor fusion. Enhance your [YOLO26](https://docs.ultralytics.com/models/yolo26/) projects on the [Ultralytics Platform](https://platform.ultralytics.com).
The Extended Kalman Filter (EKF) is a robust mathematical algorithm designed to estimate the state of a dynamic system that behaves non-linearly. While the standard Kalman Filter (KF) provides an optimal solution for systems moving in straight lines or following simple linear equations, real-world physics is rarely that predictable. Most physical objects, such as a drone fighting wind resistance or a robotic arm rotating on multiple axes, follow curved or complex paths. The EKF addresses this complexity by creating a linear approximation of the system at a specific point in time, allowing engineers and data scientists to apply efficient filtering techniques to predictive modeling tasks even when the underlying mechanics are complicated.
To handle complex dynamics, the EKF employs a mathematical process called linearization, which essentially estimates the slope of a function at the current operating point. This often involves calculating a Jacobian matrix to approximate how the system changes over short intervals. The algorithm operates in a recursive loop consisting of two main phases: prediction and update. In the prediction phase, the filter projects the current state forward using a physical model of motion. In the update phase, it corrects this projection using new, often noisy data from sensors like gyroscopes or accelerometers. This continuous cycle of predicting and correcting helps reduce data noise and provides a smoother, more accurate estimate of the true state than any single sensor could provide alone.
Dans le domaine de la vision par ordinateur (CV), le filtre de Kalman étendu joue un rôle essentiel dans le maintien de l'identité des objets en mouvement. Les modèles avancés tels que YOLO26 sont exceptionnels pour détecter des objets dans des images individuelles, mais ils ne comprennent pas intrinsèquement la continuité du mouvement dans le temps. En intégrant un EKF ou une logique similaire, un système de suivi d'objets peut prédire où un cadre de sélection devrait apparaître dans l'image vidéo suivante en fonction de sa vitesse et de sa trajectoire précédentes. Ceci est particulièrement utile pour gérer les occlusions, où un objet est temporairement masqué ; le filtre maintient la «track » active en estimant la position de l'objet jusqu'à ce qu' il redevienne visible, une technique essentielle pour un suivi multi-objets (MOT) robuste.
The versatility of the EKF makes it a cornerstone technology in various high-tech industries where machine learning (ML) intersects with physical hardware:
Il est utile de distinguer le filtre de Kalman étendu des méthodes de filtrage apparentées afin de comprendre son utilité spécifique .
Dans le cadre de la ultralytics package, tracking algorithms use Kalman filtering concepts internally to smooth
trajectories and associate detections across frames. While you do not manually code the EKF matrix math when using
high-level tools, understanding that it powers the tracker helps in configuring parameters for the
Plate-forme Ultralytics.
Here is how to initiate a tracker with a YOLO model, which utilizes these filtering techniques for state estimation:
from ultralytics import YOLO
# Load the latest YOLO26 model (nano version for speed)
model = YOLO("yolo26n.pt")
# Track objects in a video source
# Trackers like BoT-SORT or ByteTrack use Kalman filtering logic internally
results = model.track(source="https://ultralytics.com/images/bus.jpg", tracker="botsort.yaml")
# Print the ID of the tracked objects
for r in results:
if r.boxes.id is not None:
print(f"Track IDs: {r.boxes.id.numpy()}")